
 1

FSUIPC for Advanced Users (for FSUIPC Version 3.999z8, September 2013)

For changes from the previous release, please refer to the History document.

Contents
Options in the FSUIPC.INI file (for FS2000–FS2004 primarily) .. 2
 Message Window Options (FS2004 only) ... 2
 Parameters to help some add-ons operate correctly ... 2
 General weather options .. 3
 Winds .. 4
 Visibility .. 6
 Clouds and precipitation ... 8
 Temperature .. 10
 Other options of interest ... 10
 Rarely changed and other obscure options ... 14

Logging facilities ... 18

Monitor facilities .. 19

JoyNames .. 20

Profiles .. 20

Button Programming ... 20
 Format of button definitions .. 22
 Sequences, combinations and mixtures.. 24
 Adding offset conditions ... 27
 Errors in button parameters .. 29

Keyboard programming .. 30
 Format of key definitions .. 30
 Errors in key parameters .. 31

Additional “FS” controls added by FSUIPC .. 32

Macro controls .. 40
 Mouse Macros ... 42
 Gauge local variable access (L:vars), by macro .. 43

Automatic running of Macros or Lua plugins .. 45

Axis assignments .. 46

Programs: facilities to load and run additional programs .. 48

Assignment of FLAPS_SET control (for FS2002 only) ... 49

Assignment of additional controls .. 49

Multiple joysticks ... 50

Helicopter pitch and bank trim ... 51

Message Filters .. 51

Facility for multiple INI installations ... 52

Appendix 1: About the Aircraft Specific option and ‘ShortAircraftNameOK’ 53

Appendix 2: Handling VRInsight serial devices in FSUIPC .. 56

 2

Options in the FSUIPC.INI file (for FS2000–FS2004 primarily)
In a user-registered FSUIPC installation, all of the interesting options can be controlled through the Options and
Settings window obtained by selecting the FS Modules menu, then FSUIPC (ALT, M, then F). This is the
recommended way, and allows changes ‘on the fly’. Changes made in that dialogue are recorded in a file so that they
are retained for the next re-load.

Almost all of these options are all recorded in the [General] section of FSUIPC.INI, which is an editable text file
initially created for you in the Modules folder. There are many weather processing options, and almost all are only
applicable to FS since FS2000 (and possibly CFS2). Those marked (*) can be controlled (i.e. overridden) by external
programs interfacing to FSUIPC, unless this is prevented by the ExternalOptionsControl parameter.

Only those parameters shown underlined are not adjustable within the Settings window (for a registered user).

Message Window Options (FS2004 only)
Unlike almost all of the other parameters here, these are all available to unregistered users as well as those who have
registered.

ShowMultilineWindow: This will be “Yes” if the relevant checkbox on FSUIPC’s front page (About+Register) is
checked. Multiline messages are directed to a translucent window like the one used by FS’s ATC.

SuppressMultilineFS: Determines whether multiline messages are forwarded on to FS for its message window. If
the above option is ‘Yes’ then this setting isn’t relevant.

SuppressSingleline: Operates the option to prevent all single line messages in FS’s (or AdvDisplay’s) message
window. Such messages are simply discarded if this option is selected.

See also WhiteMessages and AdvDisplayHotKey, both covered in the ‘Other Options’ section.

Parameters to help some add-ons operate correctly
These are also available in an unregistered install:

AxisInterceptsIfDirect=No: By default, FSUIPC does not intercept FS axis controls which have been assigned in its
Axis Assignments to be sent ‘direct’ to calibration. This would not normally matter either way, as axes assigned
directly should have been disabled in FS so no such controls should arrive. However, some add-on aircraft panels
(most notably that for the LevelD 767) use some of the standard axis controls to operate the autopilot. If the FSUIPC
calibration and slope changes are then applied to the values it would upset the A/P control.

Just in case there are installations which do need both direct and indirect calibration to work on the same axis
controls, this bypass can be stopped by changing the AxisInterceptIfDirect parameter in the INI file to ‘Yes’.

UseAxisControlsForNRZ=No: This is a facility for the [JoystickCalibration] section(s) of the INI file, not
[General]. It is a special option provided to try to cope with some different add-on practices (notably, in this case, the
Wilco A320). Normally, the 4-Throttles, 4-mixtures and 4-Prop pitch calibrations result in an output with either a
range which includes the reverse zone, or, if the "no reverse zone" option is checked, a range from 0 (idle) to 16383
(max). These are sent to FS using the older "????n_SET" controls (THROTTLE1_SET, etc), since these are the ones
providing the reverse zone below zero.

If you set the [JoystickCalibration] INI parameter UseAxisControlsForNRZ to "Yes", then the NRZ (no reverse
zone) option for all three axis types will use the AXIS_????n_SET controls (e.g. AXIS_THROTTLE1_SET) instead,
with a range of -16363 (idle) to +16383 (Max). This will be Aircraft or Profile-specific if you set it in the
appropriate calibration section of the INI file.

AxesWrongRange=No: This goes into the [General] section, and when set to Yes it makes FSUIPC revert to an
erroneous way of providing certain control axis values in offsets. more details:

Offsets 332E–3336, and 3412, 3416, 3418 are intended, and documented, to provide the axis values in the correct
range, calibrated if so set. For throttles, for example, the correct range is 0-16k for forward thrust, with negative
values providing reverse. These values are then suitable for application directly to the FS control offsets, exactly as
documented. Unfortunately these offsets were wrong for a long time, often providing the incorrect range (-16k to

 3

+16k). This went unreported and therefore unfixed during a period when some add-ons were developed which used
the incorrect values.

Therefore, when this serious bug was eventually located and fixed, those add-ons stopped working correctly. So, to
force these back to their old (wrong) behaviour: set "AxesWrongRange=Yes".

General weather options
PatchWeatherToADV: This parameter controls the facility, specific to FS2000/2002 only, to patch the variable
table in ADVDRV.DLL (the adventure interpreter) so that the weather variables report the same sort of values for the
same sort of weather as did FS98. In FS2002 this option also controls the patching of autopilot values and control
facilities, which would otherwise be missing. Only set this to “No” if you do not want such FS98 compatibility for
your adventures. Note that successful patching is Logged (if logging is enabled at all), as is an unsuccessful attempt.
This facility is not applicable to FS2004 or later.

AdjustWeatherATIS: This option applies to FS2002 only and is primarily intended for FSMeteo users. When
enabled, and the user is running with ‘global’ weather (not downloaded or manually set local weather), FSUIPC
intercepts weather requests from ATIS and ATC and substitutes ‘corrected’ values. For cloud bases it provides AGL
values, and for clouds, pressure (QNH) and visibility, it provides destination values. These can all be set separately
by programs such as FSMeteo. The AGL values provided depend on the surface temperature altitude value being
correctly set. FSMeteo sets this to the METAR station altitude. If it isn’t being set, FSUIPC uses the current ground
altitude, which may give odd results at times. This facility is not applied to FS2004 as it is not needed.

AutoClearWeather: FSUIPC will, by default, automatically operate the "Clear All Weather" function in FS2000–
2004 if local weather is in force and:

(a) An FS98 weather control program changes the weather, or
(b) The "Force Weather" hot key is used (see next parameter), or
(c) The "Clear All" command is received on the Advanced or (in FS2004) New Weather Interfaces.

If this automatic action is not required, set this parameter to “No”.

Note that in FS2004, FSUIPC assumes that local weather is always in force. The way FS2004’s weather engine
works allows no differentiation. Each weather station is populated with weather details which may be unique, or
which may derive directly from a global set of values. In addition, FS2004 implements a weather changing
algorithm, “weather dynamics”, which can allow the weather to be changed individually at each station with time.
FSUIPC will, by default, turn off the dynamic action when it clears all weather by any of the above methods except
the New Weather Interface (which has its own Dynamics control facility). This option is set in FSUIPC’s Technical
page and by this INI parameter:

ClearWeatherDynamics: For FS2004 only, see above.

OwnWeatherChanges: For FS2004, this is defaulted to ‘No’. When set ‘Yes’ it allows the weather filtering options
for clouds, winds and visibility to be applied to FS’s own global weather (as opposed to global weather set through
FSUIPC by an external program). The disadvantage of having this option enabled is that FS2004 weather then
always reverts to “User Defined” whenever any weather filter options are enabled, preventing weather “Themes”
remaining selected. This option is controlled by a check box on the Technical options page.

ForceWeatherKey: This allows you to assign a key press which, when used, will force-update the weather. When
you use this keystroke it will re-form the FS2000/2002 weather from the last weather received from the external
application. It will even remember the last weather received from the application after the latter is terminated. The
second time it is used with no intervening Weather change it clears the weather completely, just as if FS2000’s
“Clear All Weather” button had been pressed.

Note that if the “AutoClearWeather” option is disabled you may need to clear the weather manually in the FS
dialogues before the hotkey will restore the external weather.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). For example, I use (and recommend)
"CTRL+SHIFT+W" which would be

 ForceWeatherKey=87,11

The same control codes are used in FS2002 and FS2004.

 4

SendWeatherInterval: In FS2002 (only), the weather provided by the built-in ATIS reports does not necessarily
abide by the current weather prevailing. To get these reports updated, FSUIPC has to send weather change signals to
other parts of FS2002. Unfortunately this results in an update of the ATIS identifier, which in real life only occurs at
hourly intervals. So FSUIPC offers two options: this one, to set the minimum interval between weather updates for
ATIS (in seconds), and the next one, to avoid sending any such updates unless the weather has changed noticeably.

The default interval is set for 60 seconds. You shouldn’t set it too short, but you may want to set it to a larger value.
But be aware that this interval is imposed even if you transit to another METAR station area, but FSUIPC does
recognise when you’ve loaded a new flight, so the interval is not imposed at this time.

To stop FSUIPC ever sending weather change signals, set this parameter to 0.

SendWeatherAlways: [FS2002 only] By default the ATIS weather is only sent when there are noticeable changes in
the weather (the criteria are listed below). By setting this parameter to ‘Yes’ you can make FSUIPC send the updates
at the specified intervals whether there’s been any change or not.

The criteria for deciding on weather changes are as follows. You should note that all these refer to surface weather,
not necessarily the weather at the aircraft. Furthermore, if you are using FSMeteo and have set the destination
weather, and FSMeteo has now supplied this for ATIS reports, it will be this weather which is used in the
comparison even though FS’s own ATIS will be reacting to current weather, not the station weather.

• Surface temperature altitude changed* (this is used for METAR station elevation)
• Temperature changed by more than 3C
• Wind speed changed by more than 5 knots
• Wind direction changed by more than 5 degrees
• Cloud base changed by more than 500 feet
• Cloud cover (lowest layer) changed by more than 2 oktas
• Any change in precipitation from the lowest cloud layer*
• Visibility changed by more than 50% of lower value
• Barometric Pressure changed by more than 5 mb

*Note that the broadcast is performed immediately and without further checks when there’s any change in the
METAR station altitude or in precipitation, no matter what these INI file parameters say. This is in an attempt to
prevent the FS2002 problem whereby the cached weather retains everlasting rain even though “Clear All Weather”
actions.

Winds
WindTransitions (*): [Not FS2004] If you enable this option FSUIPC will operate all FS2000/2002 winds other
than those in ‘local weather’ mode (provided by the downloaded ‘real weather’ feature) in such a way that the
transition across wind layers is reasonably smooth. It does this by setting only one wind layer into FS2000/2002—a
very deep surface wind layer. The wind speed and direction is then programmed into this layer on a second-by-
second basis according to the actual requested wind layer prescribed by the weather control program and the current
plane altitude. At altitudes nearer to a layer boundary than 250 metres the actual speed and direction is computed
proportionally.

Note that if 250 metres is more than 10% of the current layer’s thickness, then that 10% is used instead. This allows
some amount of wind shear to be set if required by defining a very narrow upper wind layer.

WindSmoothing (*): [FS2004] This option controls the FS2004 wind smoothing options, both those dealing with
externally set global weather (not so effective), and those operating only on the wind experienced at the aircraft.

WindSmoothness: Except on FS2004, where it operates differently, this facility only operates when
WindTransitions are enabled, but unlike WindTransitions, it also works for downloaded ‘local weather’. It allows the
wind changes to be restricted to a maximum of so many knots and so many degrees per second—with the default set
to 5 (knots or degrees), which seems to work quite well. It is designed to prevent sudden wind changes when the
weather control program selects a new METAR station, or the user loads a new METAR report. The feature does not
operate when the aircraft is on the ground (or being slewed in the air from a ground start). To switch the smoothing
off, set this parameter to 0.

On FS2004 wind smoothing operates on two ways. First, rather ineffectively (because FS2004 weather does not stay
global), it works on global weather set by external programs. In this case it smooths changes to the wind layer in
which the aircraft is currently situated, and the one immediately above and below. Second, with rather too much

 5

effect (as it smooths out gusts and turbulence too), it operates on the wind actually experienced at the aircraft. In this
case the smoothed wind may not be reflected in ATIS and other weather reports.

WindSmoothingDelay:
WindSmoothAirborneOnly: These two, for FS2004 only, control the timing of the all-weather wind smoothing
action, if it is enabled. The “delay” value is in seconds, and delays the start of smoothing after any “clear all
weather” action (whether by loading a Flight, using the FS weather menus, using the FSUIPC clear weather facility,
or by specific external program action). The option to smooth only when airborne allows the winds at the airport to
be changed and set as desired, before take off.

ExtendTopwind: This option extends the highest current wind layer to operate all the way up to 100000 feet. This is
really intended as a stop-gap for downloaded real weather, which only supplies a thin surface wind layer and no
upper winds. On FS2004 this is only applied to global weather and all externally supplied weather.

MaxSurfaceWind: This allows the surface wind to be limited to a specified maximum wind speed, in knots. This
facility is disabled if the value assigned here is 0. It applies to winds from any source.

WindDiscardLevel: This parameter sets a wind speed above which inputs from an external weather control
program, using the FS98 interface (not the Advanced or New Weather Interfaces) are ignored. The default for this
value is 400 knots. If a weather control program tries to set a wind speed above this, it is ignored and the previously
set speed for this wind layer is retained. (This parameter is provided specifically to prevent problems occurring with
programs using corrupted data from an Internet download or other problems). Set this parameter to 0 to disable this
check altogether.

WindLimitLevel: This parameter sets a limit on the wind speed which can be accepted from an external weather
control program, using the FS98 interface (not the Advanced or New Weather Interfaces). The default for this value
is 200 knots. If a weather control program tries to set a wind speed above this (but below the “WindDiscardLevel”
above), it is ignored and 200 knots is set instead. Set this parameter to 0 to disable this check altogether.

WindShearSharp: [not FS2004] Set to ‘No’ to make FSUIPC set the Wind Shear to the default (minimum) setting.
FSUIPC normally sets this to "Sharp" to avoid horrible spurious winds occurring during the transition, apparently an
FS2000 bug (which may or may not be fixed in FS2002). [Note: if “WindTransitions=Yes” there are no wind layer
transitions seen by FS2000/2002, so this parameter then does nothing].

UpperWindGusts (*): Set to ‘Yes’ to make FSUIPC copy the upper wind gust information provided by the weather
control program. These are normally suppressed by FSUIPC because upper winds aren't gusty, and FS's gusts can
seem pretty wild anyway. Note: this parameter is not operational if SuppressAllgusts has been enabled. On FS2004
this is only applied to global weather and all externally supplied weather.

SuppressAllGusts: Set this to ‘Yes’ if you feel that FS’s simulation of wind gusts is unrealistic, and cannot be
corrected by the adjustments in the FS CFG suggested elsewhere. If this is set to “Yes” then the UpperWindGusts
parameter is ineffective. On FS2004 this is only applied to global weather and all externally supplied weather.

GustsRelative: Set to ‘No’ to set gust velocities as the maximum gust speed, which is what FS2000 should be using
according to the way the Winds dialogue works. The default setting (Yes) makes FSUIPC set gust speeds to the
difference between the upper gust speed and the normal wind speed. This is to get around an apparent bug in FS2000
where it seems to add gust speeds to the wind speed rather than treat them as a maximum. (See the hints in the main
User Guide on getting FS2000 gusts working better). The parameter is not used on FS2002 or later. The correct
setting for FS2002 is actually No and this is assumed.

WindTurbulence: Set this to ‘Yes’ to make FSUIPC generate some random turbulence in all wind levels. This will
range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from
FS2000/2002 “real weather” or from an external weather program. It will vary over time as well.

On FS2004 this is only applied to global weather and all externally supplied weather.

SuppressWindTurbulence: Set this to ‘Yes’ to prevent any wind turbulence. This is mainly intended to help
maintain good frame rates in FS2002 even with dense A.I. traffic. There’s a similar option for cloud turbulence. On
FS2004 this is only applied to global weather and all externally supplied weather.

LimitWindVariance: [FS2004 only] This option limits the amount of wind variance (direction changeability) which
external programs can set. It is progressive—more variance is allowed for lower wind speeds.

ToggleTaxiWindKey: This allows you to assign a keypress which, when used, will swap the current surface layer
wind speed and gust setting with a wind speed of 1 knot and no gusts (or, with FS2004’s reduced crosswind mode
enabled, just reduces the crosswind component). Using the same hot key again will restore the original speed and
gust setting. Except on FS2004, if it is used when the current wind is not related to the requested surface wind layer

 6

then nothing is changed (but a ‘beep’ may be heard as a warning). On FS2004 it applies to the wind experienced at
the aircraft, independently of wind layers.

Note that this is inoperative if AutoTaxiWind is enabled

This feature can be useful to avoid the excessive weather-vaning whilst taxiing. It works with any type of weather
applied to FS2000/2002/2004, but only on the lowest wind layer in the first two. However, the AutoTaxiWind is
probably more suitable for most uses.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). For example, I use (and recommend)
"CTRL+SHIFT+T" which would be

 ToggleTaxiWindKey=84,11

The same control codes are used in FS2002 and FS2004.

AutoTaxiWind: This feature operates the taxi wind automatically, normally setting it to 1 knot when the plane is on
the ground, and allowing the correct wind to transition in (according to the WindSmoothing setting above) after take-
off. If this option is enabled the manual taxi wind on/off switching is disabled.

On FS2004, if the reduced cross-wind option is enabled, then the taxi wind is implemented as a reduced cross wind
instead of an outright reduction to 1 knot. The cross wind is reduced to near zero at ground speeds below 20 knots,
then allowed to increase proportionally to the ground speed–more so on heavier aircraft. In autom,atic mode this
applies both on the ground and when airborne but within 500 feet of the ground.

PropTaxiWind: This applies to FS2004 only, and is set to ‘Yes’ when the reduced cross-wind option is enabled. It
is ‘No’ by default for compatibility with previous versions of FSUIPC.

WindAjustAltitude: (Apologies for mis-spelling). Set to ‘Yes’ if FSUIPC should add the value specified in
WindAjustAltitudeBy to all the wind layer boundaries specified by an external weather control program using the
FS98 interface (not the Advanced or New Weather Interfaces).

WindAjustAltitudeBy: See previous parameter. This is in feet and defaults to 2000.

WindSetVariance: [Not FS2004] When this option is enabled it makes FSUIPC convert any wind turbulence into
wind “variance”. On FS2000 this is done for all wind layers, but in FS2002 it is only applied to upper layers. This
feature seems to at least make FS do something (actually it introduces random variations in the wind direction),
whilst the turbulence options seem ineffective.

WindVarFactor: [Not FS2004] This sets a value from 1 to 20 (default 7) which effectively controls the percentsge
effect of wind turbulence on wind variance, when The WindSetVariance option is enabled. The default of 7 is
rather less that the value I felt was realistic, which would be 10 (equating to 100%). In FS2002 the factor is doubled
internally before being applied, as the effect seems rather feeble otherwise.

MagWindsToFST: [Not FS2004] If this is set ‘Yes’ then the wind data supplied to FSTraffic gives the wind
direction in degrees Magnetic. Otherwise this is in degrees True, as it would be without FSUIPC running.

UpperWindsToFST: [Not FS2004] Set this to tell FSUIPC to send a fixed surface wind direction to FSTraffic when
the aircraft is above a specified altitude. This is needed by some tracks for airways. As an example:

 UpperWindsToFST=270,18000

Will cause all surface winds reported to FSTraffic to be from 270 degrees (Mag), once the aircraft is above 18000
feet.

SubterraneanWindFix: This is a facility in FS2002 only to ‘fix’ the odd winds up to 1000 feet AMSL which occur
in the FS2002 downloaded “real weather”, even at METAR stations which are at altitudes over 1000 feet. It is
defaulted on (‘Yes’), because these inaccessible surface winds otherwise cause several other FSUIPC facilities to go
wrong—most noticeably the Taxi Wind option.

Visibility
MinimumVisibility: This parameter, which defaults to 0 (meaning it is inactive), is used to prevent any weather
source setting a visibility below a specified minimum. The value is set in hundredths of a statute mile (i.e. 100 = 1
mile). Note that there may be a short delay (possibly a second) after a new low visibility has been applied before it is
detected and corrected by FSUIPC.

 7

On FS2004 this is applied to global weather and all externally supplied weather, and since FSUIPC 3.51, to FS’s
own weather. However, if it is being imposed on FS’s own weather the current visibility will not be reported
correctly in weather reports such as those read by external programs and ATIS in FS. This is because the only way of
imposing the visibility minimum is by changing the effect at the end stage, the rendering at the aircraft, and not in the
weather system as such.

MaximumVisibility: This parameter, which defaults to 2000 (20 miles), is used to prevent any weather source
setting a surface visibility above a specified maximum when there is any cloud layer with more than 2/8ths cover.
The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). Note that there may be a short delay after a new
high visibility has been applied before it is detected and corrected by FSUIPC. The parameter is only effective if the
value is greater than the MinimumVisibility parameter.

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityFewClouds: This is the same as the previous parameter, except that it gives the maximum to be
used when there are no cloud layers of more than 2/8ths cover. It defaults to 6000 (60 miles) The idea is that the
extended visibility gives bluer skies by day and more stars by night (but lower frame rates. Sorry, you can’t win
every way <G>).

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityOvercast: This is the same as the previous parameter, except that it gives the maximum to be
used when there is at least one cloud layer of more than 6/8ths cover. It defaults to 2000 (20 miles).

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityRainy: This is the same as the previous parameter, except that it gives the maximum to be used
when there is any rain or snow. It defaults to 1000 (10 miles). If it is raining and cloudy the lower of the applicable
limits is used.

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

LowerVisAltitude: [Not FS2004] When the visibility is set from an FS2000/2002 source, such as its downloaded
‘real weather’, or by the user setting it through the weather dialogues, there is already an upper altitude, above which
global visibility values take over (unless influenced by FSUIPC’s graduated visibility facility, described below).
However, for visibility controlled by external programs, via the FS98-compatible interface, there is no such altitude
so one has to be inserted by FSUIPC. This is specified by LowerVisAltitude in feet, which defaults to 6000.

GraduatedVisibility (*): With this enabled FSUIPC provides a smooth change in visibility from the upper altitude
of the surface level visibility to a specified upper visibility at another, specified, upper altitude. The two parameters,
UpperVisibility and UpperVisAltitude, control this. The surface visibility extends up to the LowerVisAltitude
(above) for visibility controlled by external programs using the FS98 interface, but is controlled by FS2000/2002 for
its “real weather” or for visibilities set through the FS2000/2002 dialogues.

On FS2004 this facility is applied to all weathers irrespective of the visibility layer.

UpperVisibility: On FS2000 and FS2002 this parameter, which defaults to 6000 (60 statute miles), is used to
prevent any weather source setting a visibility above a specified maximum. The value is set in hundredths of a statute
mile (i.e. 100 = 1 mile). If GraduatedVisibility is enabled, it is used in conjunction with the next parameter (on
FS2004 too).

UpperVisAltitude: This is only used when GraduatedVisibility is enabled, and sets the altitude by which the
UpperVisibility should be attained. Above this altitude the visibility stays fixed at this value. The default
UpperVisAltitude is 25000 feet.

ExtendMetarMaxVis (*): This checks the visibility being set and adjusts it in three specific circumstances, as
follows:

1. If the FS98 program sets it to a value between 99.95 and 100.04 miles, it is reset to 6.20 miles. This is
in order to rectify the results from any programs that take the 9999 metre maximum METAR visibility
and transmit it literally as a number of 1/100ths of statute miles.

2. If the value is then in the range 6.15 to 6.24 miles (i.e. close to the 9999 metres maximum of a metric
METAR), it is adjusted to a random value between 6.20 miles and the current maximum value (which
will either be the MaximumVisibility parameter value, or 150 miles).

 8

3. If the value is between 9.95 and 10.05 miles (i.e. close to the 10 statute mile maximum of a U.S.
METAR), then it is adjusted to a random value from 10 miles to the current maximum (which will
either be the MaximumVisibility parameter value, or 150 miles).

Note that the random addition is computed only once every five minutes, to avoid constant changes in visibility
should the weather control program re-write the value from time to time.

On FS2004 this is only applied to global weather and all externally supplied weather.

SmoothVisibility and VisibilitySmoothness control the option to smooth visibility changes from external programs.
The former parameter switches the option on or off (default “No”), and the second sets the number of seconds of FS
elapsed time for each 10% change in the visibility range (default 2). On FS2004 this applies to all weather, and is
independent of the visibility layer.

VisSmoothingDelay:
VisSmoothAirborneOnly: These two, for FS2004 only, control the timing of the all-weather visibility smoothing
action, if it is enabled. The “delay” value is in seconds, and delays the start of smoothing after any “clear all
weather” action (whether by loading a Flight, using the FS weather menus, using the FSUIPC clear weather facility,
or by specific external program action). The option to smooth only when airborne allows the visibility at the airport
to be changed and set as desired, before take off.

SetVisUpperAlt and VisUpperAltLimit are for FS2004 only, and control the option to impose an upper limit on the
FS2004 visibility layer, when the weather is being set from the global values or by an external program. The default
is 6000 feet, and this is set when zero occurs here.

Clouds and Precipitation
These rain and storm facilities are for FS2000 and FS2002 only:

GenerateRain (*): Set this option to ‘Yes’ to allow FSUIPC to provide semi-random rain/snow generation,
assuming the external weather program is not controlling this. For rain or snow FSUIPC requires 3 or more
oktas of cloud (1 okta if it is a thunder cloud) and a cloudbase at no more than 3000’ AGL.

RainStarter: controls the probability of rain or snow starting. This check occurs every minute or so. The
default is 75 (out of 100). A value of 100 guarantees rain starting, providing the cloud is suitable as described
above.

RainStopper: controls the probability of rain or snow stopping. This check occurs every minute or so. The
default is 75 (out of 100). A value of 100 guarantees rain stopping.

StormsAutomatic (*): Leave as ‘No’ to allow suitably programmed weather control programs to use all three
FS98 cloud layers for any types of cloud. With this option set to ‘Yes’ the "thunderstorm" layer can only be
used for storms, as it was in FS98.

StormProbability: A value from 0 to 100 representing a percentage probability of a storm. For a storm to be
generated the winds and clouds must also be adequate—as defined in StormParameters below. This is
checked every two minutes. The same probability is used to determine when a storm dissipates, after its
minimum duration.

StormParameters: This should be used with care. The value provided is used to determine what conditions
must prevail before a ‘random’ storm is even considered. It is used as follows:
 StormParameters=WWCBBHD

All 7 characters are decimal,

 WW Minimum surface wind speed needed (in knots). Default is 10.
 C Minimum cloud cover (1–8, default 3).
 BB Maximum cloud base AGL, in thousands of feet (default 05, i.e. 5000 feet).
 H Minimum cloud thickness, in thousands of feet (default 3, i.e. 3000 feet).
 D Minimum duration of storm, in minutes, with 0 meaning 10 (default 0, i.e. 10 minutes)

Regardless of the value of D, the duration may be extended at random, with a probability then of it ending
being the same as that of it starting. Of course if the cloud or wind conditions change the storm may end much
earlier than the specified minimum.

The default parameter (applicable even if it not shown in the .ini file) is therefore:

 9

 StormParameters=1030530

StormMinTemp: This is an additional Storm Parameter, and sets the minimum surface air temperature at
which the random storms will be allowed to occur. Default is 10 (Celsius), range –99 to 99.

Most of the other cloud facilities do apply to externally-supplied weather for FS2004:

GenerateCirrus (*): Set to ‘No’ to stop the occasional extra cirrus layer being added automatically by FSUIPC. Set
to ‘Force’ to make FSUIPC add the occasional cirrus layer even if an external weather control program turns the
option off.

CloudforJetTrails: For FS2000 and FS2002, set to ‘Yes’ to make FSUIPC often add a 1/8th cover cumulus layer,
high (but below the added cirrus). This is in order to allow Jet Trails to be produced by FSClouds 2000.

CloudForVSky: For FS2002 only, set to ‘Yes’ to generate a top layer of overcast cirrus, for FS Sky World SE’s
“virtual sky. The minimum altitude is then given by MinVSkyAltitude in feet.

OneCloudLayer: This defaults to ‘No’. Set it to ‘Yes’ to prevent there ever being more than one layer of clouds.
This may help get better performance on slower machines. It won’t help much on faster machines.

ThinClouds, ThinThunderClouds: These default to ‘No’. Set to ‘Yes’ to prevent any single cloud layer being
thicker than 1000 (or 10000) feet (or whatever is set in the CloudThinness (or ThunderCloudThinness) parameter,
below), from the nominal cloud base to its top (not including any variations which may be set). This may help get
better performance on slower machines. It won’t help much on faster machines, but it could be used to get more
realistic cloud thicknesses if weather programs generate them too thick. Note that if the thunder cloud one is not
enabled, the other applies to all cloud layers.

CloudThinness, ThunderCloudThinness allow the limits applied by the ThinClouds and ThinThunderClouds
options to be changed. The defaults are 1000 and 10000 feet. The range accepted in both cases is 100–59999 (feet).

CloudTurbulence: Set this to ‘Yes’ to make FSUIPC generate some random turbulence in all cloud layers. This will
range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from
FS2000 “real weather” or from an external weather program. It will vary over time as well.

SuppressCloudTurbulence: Set this to ‘Yes’ to prevent any cloud turbulence from any source. This is mainly
intended to help maintain good frame rates in FS2002 even with dense A.I. traffic. There’s a similar option for wind
turbulence.

CloudTurbulenceToWinds: This is for FS2000 global weather only, and is an alternative way of dealing with the
frame rate hit with dense A.I. traffic. If the option is selected, cloud turbulence is removed and instead emulated by
wind turbulence when flying in the cloud layer. This helps frame rates while outside the cloud layer, but not whilst
within it.

CloudIcing: Set this to ‘Yes’ to make FSUIPC generate some random icing in clouds. This will range from none to
extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from FS2000 “real weather”
or from an external weather program. It will vary over time as well.

MaxIce: For FS2004 only (where the icing effects seem to be substantially increased over FS2002). The value here
is 0–4 to limit the icing to that level (0 = No icing, 4 = Any icing), with the default set to 3 (just preventing “severe”
icing, level 4). If the option is actually disabled the value is retained by saved as a negative number. In this case –1
represents 0 but disabled, to –5 representing 4 disabled. Note that in FS2004 only the global FS weather and inputs
from weather programs can be so limited. Furthermore FS’s own global weather is not changed unless the
appropriate technical option is enabled.

MaxIce: Also for FS2004 only. The value here is 0–4 to ensure that icing is never below a given level (<=0 = No
icing, 4 = Max icing). A value set greater than MaxIce will operate only to make all icing the same as the MaxIce
level. Note that in FS2004 only the global FS weather and inputs from weather programs can be so set. Furthermore
FS’s own global weather is not changed unless the appropriate technical option is enabled.

ApplyVisFix: [Not FS2004] By default FSUIPC will attempt to stop the “stuck low visibility” or white-out problem,
apparently due to a bug in FS2000’s Weather.dll. It does this by checking the effective visibility once a second and
trying to progressively correct it if it is lower than it should be when the aircraft is not inside a cloud layer. Note that
the detection of cloud layers is not 100% reliably done at present (I’m working on it!), but at least the only bad
symptom should be an occasional higher visibility than you’d expect. Note that it isn’t proven than this ‘fix’ works in
100% of cases where a whiteout may occur, but it certainly reduces their frequency by a large amount!

When Microsoft fix the bug causing the problem, simply disable this work-around by setting ApplyVisFix=No.
Whether the bug still exists in FS2002 has not been determined at the time of writing.

 10

FixRainProblem: This applies to FS2002 only, and by default it is set to ‘Yes’. It tells FSUIPC to take special steps
to prevent the ‘everlasting rain’ problem occurring when using an external weather program, like FSMeteo. If MS
does ever fix this FS2002-only bug then you can make FSUIPC a little more efficient by changing this option to
‘No’.

KeepFS98CloudCover: When the clouds are set through the FS98 IPC interface (as from SquawkBox, but not
FSMeteo), FSUIPC adjusts the cover requested for Cumulus type clouds to make them “look right”. It adds 2 to the
Okta value for coverage below 5. Without this a cover requested as “scattered” (3/8) can look very sparse. If you
want the okta coverage in FS to match the setting made by the external program, set this parameter to ‘Yes’. (Note
that you should not attempt to use FSClouds vapour trails if you do this, otherwise they can appear at the wrong
altitude).

CloudTypesFixed: If you are using a weather setting program which tries to set cloud types not supported in
FS2004 (resulting often in an eventual crash in Weather.DLL), you can add the parameter CloudTypesFixed=Yes to
the [General] section of the FSUIPC.INI file. This tells FSUIPC to map all supplied cloud types to one of those
known, i.e: 1 (Cirrus), 8 (Stratus), 9 (Cumulus), 10 (Cumulonimbus).

Temperature
CopyDewPtToDayNightVar: [Not FS2004] When there are multiple temperature layers, the ATIS reports of
FS2002 (and perhaps FS2000) get the Dew Point wrong: they report the Day/Night variation as the Dew Point. To
get around this, FSUIPC normally copies the Dew Point to the Variation. The latter is not actually used in FS2000 or
FS2002 in any case. If you want to stop this occurring, just set this parameter to ‘No’.

Other options of Interest
RemoveATC: This makes FSUIPC apply patches to FS2004’s ATC.DLL module, to forcibly prevent the FS ATC
windows from appearing at all, and to prevent any of three different crashes which can occur in ATC.DLL when
running FS with third party ATC programs and FS’s ATC turned off. Note that this should only be used when you
absolutely do not want FS’s ATC to apply to your flights, for instance, when you use only Radar Contact, or possibly
VoxATC. It does not prevent the ATC voices, the AI traffic vocal interactions and ATIS read-outs. You may want
those as additional chatter in any case, but if not just turn off the ATC sound, or turn it down, in FS’s sound options.
This option is available to unregistered FSUIPC users too.

ExternalOptionControl: Set this to ‘No’ if you want to retain control over all the settings for FSUIPC. Normally
some of the original options are available for an external weather control program to set according to its needs.

AdvDisplayHotKey: This allows you to assign a key press which, when used, will hide or (if there’s no other reason
it is hidden) display the AdvDisplay and/or multliline message window. For this to work in AdvDisplay you need to
be using AdvDisplay version 2 or later. The FSUIPC message window is only available in FS2004.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). For example, I use (and recommend)
"CTRL+SHIFT+A" which would be

 AdvDisplayHotKey=65,11

The same control codes are used in FS2002/4.

PFCrestartHotKey: This allows you to assign a key press which, when used, will tell the PFC driver (PFC.DLL) to
restart all of its serial port activity, including closing and re-opening the port. For this to work you need to be using
PFC.DLL version 1.63 or later.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (still applicable to FS2002/4, and listed below, in the Button Programming section). For example, I use
(and recommend) "CTRL+SHIFT+P" which would be

 PFCrestartHotKey=80,11

AllEngHotKey: This allows you to assign a key press which, when used, will re-select all engines on the currently
loaded aircraft. It is effectively the same as using the keypress E plus 1, 2, 3, 4 on the main keyboard, depending on
the number of engines, but the hot key will work when, apparently, the proper key sequence does not (on three
engined aircraft it seems). See the preceding entry for details of how the key is defined.

 11

StopAutoFuel: Set this to ‘Yes’ on FS2002/4 to stop automatic re-fuelling at scenery fuel boxes. With this selected
you can only increase fuel via the FS menu or by using a program or gauge which does it via FSUIPC’s offsets.

CorrectVSsign (FS2002/4 only), or PatchSimApAlt (FS2000): These options provide one or two ‘improvements’,
to the FS autopilot. First, for FS2000, the PatchSimApAlt option patches SIM1.SIM (the main aircraft simulating
part of FS) to correct some inaccuracy in the autopilot’s altitude holding capability. The inaccuracy occurs when
flying Flight Levels and increases with the difference between the altimeter setting (e.g. the standard pressure setting
of 29.92” or 1013mb for Flight Levels) and the actual barometric pressure at sea level (QNH). This action is not
applied to FS2002 or FS2004 as it seems to have been fixed in the later simulation engines.

Second, the same option (renamed to ‘CorrectVSsign’ for FS2002/4) corrects the vertical speed setting if it is set to
climb when the aircraft would need to descend, or vice versa. It does this by inverting the sign of the vertical speed
setting. It only does this when altitude acquire/hold is enabled, so that vertical speed control by itself is not affected.
The correction is also not applied if the target altitude is set to a value over 65000 feet—a trick used by some panels
to provide V/S controlled ascents and descents.

If neither of these functions are required, set the appropriate parameter to ‘No’. Note that the setting can be
overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting this parameter differently
in that [JoystickCalibration …] section.

DisconnTrimForAP: When this option is enabled, FSUIPC disconnects the analogue elevator trim axis input to FS
whenever either the FS autopilot is engaged in a vertical mode (altitude hold or glideslope acquired), or a program,
gauge or module has disconnected the elevator axis via FSUIPC (offset 310A).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by
setting this parameter differently in that [JoystickCalibration …] section.

ZeroElevForAPAlt: controls the option for FSUIPC to automatically centre the elevator input each time the
Autopilot altitude hold mode is changed (switched on or off, including AP engaged changes too). This option can be
operated inside FS on FS2004, but if needed on earlier versions must be enabled in the INI file by setting this
parameter to “Yes”.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by
setting this parameter differently in that [JoystickCalibration …] section.

ReversedElevatorTrim: This is probably not of any real use nowadays, as all the axes can be reversed in
FSUIPC4’s joystick calibration facilities. Best left set to ‘No’.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by
setting this parameter differently in that [JoystickCalibration …] section.

PlanLoadNoPosition: This option changes the behaviour of the FS2000/2002 facility to load flight plans into the
GPS. If you set “PlanLoadNoPosition” to Yes, the FS2000 plan loader will not position the aircraft for you. Many
folks prefer this as they like to start the flight with the aircraft parked on the ramp, and taxi to the correct runway
themselves. This option is defaulted off (=No) to avoid confusing users already used to and happy with FS2000
working as it does now. Set it to “Yes” if you would prefer the facility not to move the aircraft.

This option is not available in FS2004 as it is not needed—FS2004 provides such an option in any case.

MagicBattery: This reduces the discharge rate on the battery, keeping the voltage from dropping. If this is set ‘Yes’
or 0 then no drop is allowed. If set ‘No’ or 1 then the battery discharges normally. Any value from 2 to 999 acts as a
divisor on the discharge rate, so 2 makes the battery last twice as long, and so on. This is designed to assist in getting
over the apparent error in the airliners, which makes it discharge far too quickly before engine start.

FixWindows: set to ‘Yes’ prevents cockpit windows resizing and moving. This facility can also be used in FS98 but
as there’s no in-program options for FS98 you must make sure the panel and scenery windows are exactly as you
want them to be before setting this parameter.

SmoothPressure: set to ‘Yes’ to smooth barometric pressure changes by limiting the changes from external
programs to 1 millibar ever so many seconds. The number of seconds is given by PressureSmoothness which
defaults to 5 and can have any value from 1 to 30, inclusive. On FS2004 this option is only applied to global weather
and pressure set by external weather programs.

SetStdBaroKey: This allows you to assign a keypress which, when used, will set the ‘Kollsman’ window on the
Altimeter to the standard pressure, 29.92” or 1013.2mb. This is used when flying ‘flight Levels’.

 12

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). For example, I use (and recommend)
"CTRL+SHIFT+B" which would be

 SetStdBaroKey=66,11

The same control codes are used in FS2002.

TCASid: FSUIPC supplies data on the FS2002 additional “Artificially Intelligent” (A.I.) aircraft flying in the
neighbourhood, for external TCAS or mapping programs to display. Normally the aircraft is identified by its Airline
and Flight number, if there is one, otherwise by the Tail number.

However, other types of identification string can be chosen instead. In particular, the optional labels placed on the
aircraft by FS in the scenery view only shows tail numbers, so if you want to match them up you’d want to set this
parameter to “Tail”. The full list of options here is:

 Flight for airline+flight, or tail number, as available (default)
 Tail for tail numbers only
 Type for the “ATC type”, generally only the Make
 Title from the aircraft title (in the .CFG file), truncated to 17 characters
 Type+ for the type as above, truncated if necessary, plus the last 3 characters of the tail number
 Model for the model description

The utility “TrafficLook” is supplied—you can see the difference in its display.

TCASrange: Sets the maximum range at which FS2002 A.I. aircraft will be added to the tables for external TCAS
applications. This defaults to 40 nm. A value of 0 turns off the limit altogether. This parameter can be adjusted in the
Technical page of the FSUIPC Options whilst FS2002 is running.

FixedTCASoptions=Yes can be added by the User if the above two settings are to remain locked, unchangeable
except by editing here, in the INI file.

SetSimSpeedX1: optionally sets a Hot Key which when used resets the simulation rate to x1 (i.e. normal). The
keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). The same control codes are used in FS2002. As
an example, for "CTRL+SHIFT+S" this would be

 SetSimSpeedX1=83,11

ThrottleSyncToggle: sets a Hot Key which operates a facility to make all throttle inputs, for any engine, affect the
throttle inputs to all engines. It’s a toggle function—if it is on then using it again turns it off. If you are only using a
single throttle then this won’t make a lot of difference except that every time you use toggle it FSUIPC will make the
throttle selection (i.e. the keypress E+1 … etc) apply to all engines. The keystroke is defined as in Flight Simulator’s
own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button
Programming section). The same control codes are used in FS2002 and FS2004. As an example, for
"CTRL+SHIFT+E" this would be

 ThrottleSyncToggle=69,11

ThrottleSyncAll: controls whether the Throttle Sync Hot Key and added controls also operate on the Prop Pitch and
Mixture values as well as throttles. This has no effect on jets and helicopters.

FixControlAccel: This, if enabled intercepts all controls, and changes the elapsed time location inside FS before
forwarding every different (non-axis) control, so that the time elapsed looks large enough for the control not to be
accelerated. If it sees successive identical controls then it leaves them, so they can be accelerated as normal. [This
should not be used by keyboard flyers!]

For a fuller explanation, please see the User Guide.

SpoilerIncrement: This controls the amount the FSUIPC “Spoiler inc” and “Spoiler dec” change the spoiler position
on each use. The default is 512, giving 32 steps from spolers lowered (0) and fully deployed (16383).

AileronSpikeRemoval, ElevatorSpikeRemoval, RudderSpikeRemoval: These control the options to ignore any
aileron/elevator/rudder signals specifying maximum possible deflection. It is mainly useful in conjunction with
Wilco’s 767PIC on FS2002, which seems to cause these spurious ‘spikes’ on the elevator occasionally, and on the
rudder when flown with the yaw damper switched off.

 13

ClockSync: This facility, applicable only to FS2002 and FS2004, and kindly donated by José Oliveira, compensates
for the odd phenomenon of FS losing time. It synchronises the seconds values with that of your PCs system clock. It
is defaulted off (=No).

SmoothIAS: This option acts only on the Indicated Air Speed offered to external programs through the IPC
interface—in other words, the DWORD at offset 0x0580. It smooths the value by automatically providing a moving
average of 23 samples taken at roughly 55 mSec intervals. This appears to overcome the ratcheting effect which can
be seen on steep climbs and descents. (This is enabled by default since version 3.04).

WhiteMessages: This controls an option to forward external application “Adventure messages” to FS for display in
white on green instead of red. This only applies to non-scrolling messages. If AdvDisplay.dll is also installed and
not trapping and diverting the messages anyway, the white message option needs AdvDisplay version 2.11 or later.

UseProfiles: By default this will be set to ‘Yes’, but set it to ‘No’ if you want to use the Aircraft Specific facilities
instead of Profiles.

ShortAircraftNameOk: This is normally set “substring” to make sure aircraft- or profile-specific Keys, Buttons and
Joystick Calibration settings apply to any aircraft whose title matches a shorted form from withing the names.

Alternatively, you can set ShortAircraftNameOk=Yes for matching abbreviated names starting at the first
character, rather than any parts within, or ShortAircraftNameOk=No to only ever match full names.

ZapSound: This defines the sound to be used when the FSUIPC control for AI traffic deletion (the “Traffic Zapper”)
is successfully applied. This must be the name of a WAV file in the FS sound folder, the default being ‘Firework’.

If you do not want a sound just set it to ZapSound=None. However, the reason for the sound is so that you know
something has been Zapped. FSUIPC cannot tell what you can see, and the aircraft which is zapped may not be in
your display so you may not see it disappear.

ZapAirRange=1.5 and ZapGroundRange=0.25

These control the range of operation of the AI aircraft zapping facility. The units are nautical miles. Air and Ground
refer to the user aircraft position, not the target. Note that you cannot change the acceptance angle explicitly. It is
adjusted automatically, in linear inverse proportion to the change in the range—so with a larger range you would
need to point the aircraft nose more accurately.

ZapCylinderAltDiff=n (where n is the maximum altitude difference), can be added to change the mode of the
airborne Zapper. With this added, the target for zapping is the nearest aircraft to the airborne user which is within the
upright cylinder of radius ZapAirRange and has a difference in altitude of n feet or less, including those on the
ground below.

MouseWheelTrim: This records the setting of the ‘Use mousewheel as trim’ option on the Miscellaneous options
tab. By default it is set to ‘No’.

BrakeReleaseThreshold=75: This controls a "brake release threshold", for when your braking is controlled by toe
pedals rather than by using the keyboard or joystick buttons assigned to non-axis brake controls. In the latter cases,
operating the brakes automatically releases the parking brake (and possibly may also cancel autobraking action).
This doesn't normally happen with brake axes being used for braking, as they are separate controls. That could be
viewed as a drawback of having proper toe brake action, so this parameter is provided to set the amount of braking
needed to release the parking brake. The number is a percentage of total braking -- so the default is 75%. If you set
0% it turns the facility off. Pressure on both brakes to at least the set level is required, and the release action is not
"re-armed" until both brakes have returned to "off". The toe brakes must both be calibrated in FSUIPC.

 14

Rarely changed and other obscure options
ExtendedJoyCalib: This simply enables the extra three Joystick calibration pages in the Settings and Options
display. The actions carried out are not affected, only whether the settings are shown or not.

N1N2asFS98: Set this option (add the line if it isn’t there) to “yes” if (and only if) you want FS2000 to start up with
an FS98 jet aircraft with Engines off. It makes FSUIPC assume that the N1% and N2% values are provided as they
are in FS98 (i.e. reversed), rather than as they have been ‘corrected’ in FS2000 for FS2000 aircraft. FSUIPC does do
this automatically, but it cannot differentiate the two cases until the engines are running.

This is not really of any use in FS2002, as FS98 aircraft transferred to FS2002 seem either not to work correctly in
any case, or to be ‘converted’ to FS2002 standard via parameters generated in the Aircraft.cfg file. It is not provided
in FS2004.

AutoTuneADF: This controls an option to ‘auto-tune’ the ADF radio. If this is enabled, when FSUIPC detects no
NDB signal being received it alternates the fractional part of the ADF frequency between .0 and .5 every seven
seconds or so. This allows external cockpits built with only whole-number ADF radio facilities to be used in areas
like the U.K. which have many NDB frequencies ending in .5.

AxisCalibration: This facility deals with inputs to the rudder, aileron and elevator axis offsets, via the FS98 offsets
to the IPC interface. These values are subject to a range check, and always scaled down if this range is exceeded. The
correct limits are –16383 to +16383.

Additionally, axis inputs can be scaled upwards to meet this extent, if required. To do this set:

 AxisCalibration=Yes

By default with this option selected some flattening is applied to the values so that the response is not so vigorous
near the centre (0). To calibrate the axes you must move all three controls to their maximum extends on each fresh
load of FS2000.

Alternatively, you can set "AxisCalibration=Set". This operates as above, but adds a new section to the .ini file, thus:
[AxisCalibration]

 Rudder=<max>,<slope>
 Elevator=<max>,<slope>
 Aileron=<max>,<slope>

The <max> values are those which are scaled to 16383, whilst the <slope> values control the amount of flattening in
the centre: from 0 (no flattening) to 100 (maximum flattening. note that the flatter the centre, the steeper the sides, so
it is always a compromise.

The default “slope” values are 50, 40, 40 respectively, for the three axes.

Once this calibration has been done and the section in the ini file produced (or added manually), there is no need to
re-calibrate on each new FS reload. The "AxisCalibration" parameter resets automatically to "Yes".

Note that the "AxisCalibration=No" setting is equivalent to setting "Yes" and adding the section:
 [AxisCalibration]
 Rudder=16383,0
 Elevator=16383,0
 Aileron=16383,0

However, if these values are exceeded during an FS2000 session, the new maxima will replace any values in the ini
file.

MainMenu=&Modules: This parameter controls which main (top-level) menu entry in Flight Simulator is used to
access the FSUIPC Settings screen. The default, as shown here, is the Modules menu. Note the “&” character, which
tells Windows which letter in the name is used for the keyboard accelerator (as in “Alt+M” here).

If you prefer to have FSUIPC accessed through, say, the Flights menu, then you can change this to &Flights. Note
that the spelling and “&” characters must match whichever menu you are adding to, else a new one will be created
instead. Foreign language versions of FS will have differences too, remember.

You can have FSUIPC Settings accessed directly from the top level menu if you like. To do this simply choose a
unique menu name and add “…” to the end. FSUIPC will take this to mean that you want direct access. For example:

 MainMenu=FS&UIPC …

 15

Will create a top-level menu entry “FSUIPC …” which will lead directly to the Settings window. The accelerator
here is U, because the F is already taken (for “Flights”)—the Settings window can then be obtained very quickly by
just Alt+U.

SubMenu=&FSUIPC …: This supplies the name and the keyboard accelerator character (the one following the
“&”) which will appear in the selected ‘Main Menu’ entry (see previous item) and which leads directly to the
FSUIPC Settings window. If the Main Menu itself is made to lead directly to the Settings this entry is ignored.

TrafficScanPerFrame: Sets the rate at which FSUIPC scans the AI traffic data for changes. This is a percentage (0–
100) per flight simulator frame. The default is 10, which means it will take 10 frames to update all aircraft. You can
try higher values if you want to see more fluidity in AI traffic movement, assuming the application itself can scan
fast enough. The only penalty from higher values may be a performance hit on Flight Sim, or your application, but
many modern PCs may allow even 100% updates per FS frame without measurable degradation. If you set this to 0
you will get no AI aircraft at all, though this will not stop externally injected data (e.g. from AIBridge).

Note that since FSUIPC version 3.51 the proportion of AI traffic processed in each frame will rise if the queue of AI
traffic controls (those sent by programs such as Radar Contact, AI Smooth and AI Separation) builds up. This is
automatic and is designed to keep those queues down.

TrafficControlDirect: This only applies to FS2004, where is will normally be left to its default value ‘Yes’. It tells
FSUIPC to send all AI traffic commands directly they are received, rather than queue them up and send them on the
next frame-based traffic scan. It results in more effective and efficient control of AI traffic especially in critically
busy periods. Only set this parameter to ‘No’ if it seems to resolve any stability problems on your FS2004
installation.

TimeForSelect: [FS2004 only] This specifies the number of seconds for which the SELECT controls (normally
assigned to main keyboard keys 1–4) should remain operative for controls that need them (like Engine select, or
Aircraft Exit toggle), despite the intervention of other, different, controls. This only operates when the
FixControlAccel option is enabled. To disable this, set the time to 0. Also note that this does not influence the
similar automatic facility for the FS pushback, which, on FS2004 only, ensures that the pushback direction remains
selectable irrespective of the FixControlAccel option.

TrapUserInterrupt: Another option for FS2002 only, defaulted on, this is provided to trap certain “User Interrupt”
occurrences, which cause the “End Flight?” dialogue to appear on screen whilst flying. Apparently these can occur in
certain configurations if the aircraft is over-stressed or has some minor damage inflicted by, for example, taxiing
over rough ground.

NavFreq50KHz: It seems that, in FS2002 for the first time, the NAV radios are tunable to 25KHz frequencies, like
the COM radios. Thus the increment/decrement is 25KHz instead of 50KHz. This can cause some difficulty with
cockpit designs suited to the current actual 50KHz spacing, so FSUIPC provides this option to force NAV radio
frequencies to abide by 50KHz spacing (.00 .05 .10 .15 … .95).

InitDelay: This controls the timing of FSUIPC’s subclassing of the main FS window. This has always defaulted to
3000 (milliseconds) for 3 seconds, but now in FS2004 only it defaults to 0 in an attempt to reduce the probability of
black screen problems in FS when switching video modes. [This parameter is not shown in the INI file when
defaulted].

WeatherReadInterval: This controls the frequency at which FSUIPC reads the weather in FS2004, in order to
populate the many weather variables accessible to applications. The interval actually controls the number of FS2004
frames which elapse between each read, and is given as an exponent of 2. The default value is 4 which means 2^4 or
every 16 frames. A value of 0 would update the weather on every frame, and a value of 32 would effectively stop all
updating. Note that this also controls the rate at which any weather is updated using the old FS98 or AWI interfaces.
However, it does not alter weather setting capabilities using the New Weather Interface (NWI).

MoveBGLvariables: By default, on FS2004, FSUIPC moves the five BGL user variables (addressed in BGLs by
312 to 31A) from their new location in G3D.DLL back into their old place in GLOBALS.DLL, so they can again be
used to interaction between scenery and programs. It is not thought that there are any undesirable consequences of
this, but in case there are, this parameter is provided. Set it to ‘No’ to stop the movement.

TimeSetMode: In FS2004 FSUIPC intercepts writes to the time locations (for instance, by programs such as
FSRealTime) and uses them to issue the appropriate commands to FS to change the time. This makes the new time
correctly propagate through the AI system (and may trigger a traffic reload), and avoids subsequent otherwise
inexplicable hangs.

Designing this in a way which avoids the problems with AI traffic reloading causing hangs, yet doesn’t create too
many unwanted pauses for reloading traffic whilst flying, has proved quite a thorny problem. So, a reasonable

 16

compromise has been provided as the default solution, but options are also available to allow you to select one of two
other modes.

“TimeSetMode=Partial” is the default mode. With this set, any time change of more than one minute, or any
change at all to the hour, day or year, results in propagation through FS and will therefore trigger at least an AI
traffic reload, maybe more.

The other options, selectable only by editing the FSUIPC.INI file, are “TimeSetmode=On”, where all changes to
minutes, hours, day and year are propagated throughout FS, and “TimeSetMode=Off”, where no changes to any of
the date/time values are propagated at all. This last is how all versions of FSUIPC before 3.465 behaved.

Note that in order to try to prevent AI Traffic loading hangs when instigated by using the FSUIPC traffic density
controls, FSUIPC propagates the complete Zulu time and date immediately before reloading the traffic if the new
density value is higher than the old value.

JoystickTimeout=20: This timeout operates during the joystick scanning used within the Button and Axis
assignment options. If any joystick device takes more than 20 mSecs to respond, and then returns an error, FSUIPC
stops polling it on the assumption that it is either faulty, or has a bad driver. The ban on that device stays operative
until the options are re-entered or until the "Reload" button is used. Joysticks not returning an error but which fail to
return anything within 4 times the timeout (i.e. a default of 80 mSecs), with a minimum of 60 mSecs, are also
eliminated for that scan.

This is intended to prevent the odd hangs some folks get in the Buttons options which are thought to be due to rogue
joystick drivers without connected joysticks. The timeout used (20 mSecs by default) has a minimum of 5 and a
maximum of 5000 milliseconds.

BlankDisplays=No: Set this to Yes only if you want FSUIPC to blank and connected GoFlight displays during FS
initialisation.

PollGFTQ6=Yes: Change this to No to stop FSUIPC4 polling the GoFlight TQ6 module. It seems that all axes and
buttons on this device are already handled through Windows as a joystick device, so having FSUIPC also scan it
gives dual indications in the Buttons tab in FSUIPC options (seen as Joystick 169).

LuaRerunDeley=66: This parameter sets the time, in milliseconds, which is imposed between re-runs of the same
Lua plug-in. It is a safety precaution against repetitive execution causing an FS crash by stack overflow. For plug-ins
which take more than that amount of time to load and execute this effectively restricts the repeat rate from dials to
15 times per second. The rate from buttons or keypresses being held down was already restricted as for those the
repeat is not effective until the current plug-in execution finishes.

OldMpanelButtons: Set this to 'Yes' only if you have programmed your VRInsight M-Panel in an older version of
FSUIPC and don't want to change tha programming. This only applies if you are not also using an MCP-Combi
device, because the old facilities had an overlaps between these two.

MaxSteerSpeed=60: This parameter appears only in [JoystickCalivbration] sections, and deals with FSUIPC's
facility to 'blend' its steering tiller control into rudder control as speed whilst on the ground increases. Both tiller (the
FSUIPC direct control, not FSX's own), and rudder need to be assigned in FSUIPC by the "direct to FSUIPC
calibration" method, and both be properly calibrated for any blending to be active .

The MaxSteerSpeed parameter includes more complex facilities to restrict the rudder effect in different
groundspeed ranges. The simplest of these keeps the rudder at 10% of its input until half way to the full threshold
speed, then increase linearly to 100% This is intended to make reasonably easy to check the rudder pedals whilst
taxiing without causing bad swerves, and also allows some use of rudder even at very slow speeds at the end of the
landing ground roll. The value of 10% minimum comes from the 737NG where at taxi speeds the rudder deflection is
a maximum of 7 degrees compared with 67 degrees fully.

To make FSUIPC do this blending instead of the normal 0-100% linear method, just change the MaxSteerSpeed
parameter in the relevant [JoystickCalibration] section of the INI file to a negative value, eg -60 for the default 60
knot threshold.

A more complex specification can be provided which allows the user even more scope. The MaxSteerSpeed
parameter can be given as MaxSteerSpeed = Qn1,n2,n3,n4 where n1 to n4 are numbers used as follows:

• If n1 is not zero, then rudder effect is 0% (ie eliminated) until a groundspeed of n1 knots. Then the effect rises
linearly from 0% at n1 knots to 10% at n2 knots.

• If n1 is zero, then rudder effect is 10% until the groundspeed reaches n2 knots. n2 is not allowed to be zero.

 17

• If n3 is not zero, then rudder effect rises linearly from 10% at n2 knots to 30% at n3 knots, then linearly again
from 30% at n3 knots to 100% at n4 knots.

• If n3 is zero, then rudder effect rises linearly from 10% at n2 knots to 100% at n4 knots. n4 is not allowed to be
zero.

Note that apart from the option for n1 and n3 to be zero, n4 > n3 > n2 > n1. You should see that the option:
MaxSteerSpeed=-60 is in fact the same as specifying MaxSteerSpeed=Q0,30,0,60.

There is one shortcut. MaxSteerSpeed=Q is the same as specifying MaxSteerSpeed=Q10,20,30,60

 18

Logging facilities
These options can be controlled ‘on the fly’ from the FSUIPC dialogue window (select the Modules menu them
FSUIPC, ALT, M then F). FSUIPC always produces a text file called FSUIPC.LOG in the Modules folder. Entries in
the log are timed, from the start of the FS session. The time is in milliseconds and appears on the extreme left of each
line.

Please use the logging facilities to check things before reporting problems or omissions in FSUIPC, and supply an
appropriate log file (or extract) properly zipped up with such reports.

Note that log files can get very large if all the options are turned on. Keep test flights short. You can read log files
whilst flying provided you use a reader which shares access (like recent Notepad programs), or use the
‘NewLogKey’ described below to close logs and start new ones.

All Log control parameters go into the [General] section of FSUIPC.INI. None are included by default.

LogWeather=Yes: Logs weather data. This will log incoming data, set by a weather control program, on FS98 as
well as FS2000–2004. On FS2000–2004 you will also get the actual weather data constructed by FSUIPC in FS
terms. Then you get the weather read out by FSUIPC and lastly placed back into the globals for applications to read.
Incoming weather control data on the Advanced Weather interface for FS2000–2004, and on the New Weather
Interface for FS2004, is also logged in full.

LogWrites=Yes: Logs the global ‘writes’ received from applications, with global offset address and data size, plus
all bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very
large!]

LogReads=Yes: Logs the global ‘reads’ received from applications, with global offset address and data size, plus all
bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogEvents=Yes: In FS2004 only, this option logs all FS “key events”, other than those from axis controls. This can
be very useful to those seeking to understand the actions of their buttons and keys, or to view the sorts of things some
of the more complex panels do, repeatedly, every second.

LogAxes=Yes: Also in FS2004 only, this logs just the axis input events.

LogButtonsKeys=Yes: This logs most Keyboard events (KEYUPs only when programmed), and all button
operations. The logging can get quite long, but it will be very useful when trying to analyse exactly what your
complex FSUIPC button or key programming is doing.

LogExtras=Yes: This logs additional technical data about the inner workings of FSUIPC, the nature of which will
vary from time to time according to needs. There is nothing here that would be of interest to the user, but when
investigating problems users may be asked to enable it so that the logs returned can be more meaningful in solving
them. Do not fly extensively with this option enabled or you will fill up your disk and probably compromise the
simulator’s performance!

Additional “Extras” logging facilities are available if the parameter Debug=Please is incorporated into the INI file.
This changes the Extras logging flag into a numeric value that ranges from 0 (off) to 4095. In this range the ‘1’ bit
(i.e. any odd number) provides the normal Extras logging, and all others are used for specific debugging or
performance measuring log entries which will vary from time to time. This facility is for use under instruction only.

NewLogKey, StopLogKey: These allow you to assign keypresses to close the current Log file (if logging was
enabled), and start a new one. The ‘NewLogKey’ will carry on with the same logging options, whilst the
s’StopLogKey’ will revert to default logging (the minimum). Between them these two keys give complete control
over the logging. (Note that both actions are also available in the FSUIPC dialogue window).

The current log file is always called FSUIPC.LOG. The others are named in numerical order FSUIPC.1.LOG, …
2.LOG, … etc.

The keystrokes are defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls
documents (and listed below, in the Button Programming section). For example, I use “Shft+Ctrl+L” and
“Shft+Ctrl+O” (for “Log” and “Off” respectively) which would be

 NewLogKey=76,11
 StopLogKey=79,11

The same control codes are used in FS2002 and FS2004.

 19

Monitor facilities
FSUIPC can monitor, on every FS frame, up to four values (or the same values in different formats, if needed), and
display or log them when they change. For each value to be logged you enter or select four things:

Base: which will normally be fixed at ‘IPC’. The base is the name of the area of data from which the value shown
will be taken. All the variables supported by FSUIPC through the IPC interface are at offsets relative to the IPC base.
Only in FSUIPC debug mode, or in specific Beta versions, will other Base values be selectable.

Offset: which identifies the position of the value relative to the Base. This is a hexadecimal number, normally in the
range 0000 to FFFF. Some of the non-IPC bases may allow larger offsets. For offsets to standard IPC variables see
the Programmers Guide in the SDK.

Type: this defines the type of variable, so that the formatting in the display will show something meaningful. The
types currently supported are tabulated below.

Type Description C type Type Description C type
S8 Signed 8-bit value, -128 to +127 signed char UIF32 4 byte Integer & Fraction: 16-bit

fraction followed by 16-bit unsigned
integer

Uses an
unsigned int

U8 Unsigned 8-bit value, 0 to 255 unsigned
char, or
BYTE

 SIF64 8 byte Integer & Fraction: 32-bit
fraction followed by 32-bit signed
integer

Uses an
unsigned
then signed
int

S16 Signed 16-bit (2 byte) value short UIF64 8 byte Integer & Fraction: 32-bit
fraction followed by 32-bit unsigned
integer

Uses two
unsigned
ints

U16 Unsigned 16-bit (2-byte) value unsigned
short, or
WORD

 FLT32 32-bit (4-byte) standard floating point
value

Float

S32 Signed 32-bit (4-byte) value int FLT64 64-bit (8-byte) standard floating point
value

Double

U32 Unsigned 32-bit (4-byte) value unsigned int,
or DWORD

 ASCIIZ A string of single-byte characters
terminated by a zero byte. A length an
limited number of these is shown

Char[], or
ASCIIZ

SIF16 2 byte Integer & Fraction: 8-bit
fraction followed by 8-bit signed
integer

Uses a short SA16 16-bit signed Angle in FS format (-180
degrees = max+1)

Uses a short

UIF16 2 byte Integer & Fraction: 8-bit
fraction followed by 8-bit unsigned
integer

Uses an
unsigned
short

 UA16 16-bit unsigned Angle in FS format
(360 degrees = max+1)

Uses
unsigned
short

SIF32 4 byte Integer & Fraction: 16-bit
fraction followed by 16-bit signed
integer

Uses an int SA32 32-bit signed Angle is FS format Uses int

 UA32 32-bit unsigned angle in FS format Uses
unsigned int

Hex: For most numerical values the sensible display will be decimal. However, for the plain fixed point integer
values (S8, U8, S16, U16, S32 and U32) you may want to view them in hexadecimal instead. This is likely for bit-
oriented switch or flag collections, and of course the binary-coded decimal (BCD) values such as NAV and COM
frequencies. The Hex checkbox can be checked for these numeric values only.

Then you have to tell FSUIPC how you want these monitored values to be displayed. There are four options, and any
or all of these can be selected:

Normal Log File: Changes in the monitored values are listed in the FSUIPC.LOG for later viewing.

Debug String: The same messages are sent to a debugger or debugging monitor such as DebugView, for viewing in
parallel to the FS actions. Note that you may have difficulty running a debugger with SafeDisk-protected versions of
FS (FS2000 and FS2004).

AdvDisplay: The monitoring is done by using up to 4 lines in the erstwhile FS adventure display line. The appears
near the top of the screen, and will show 4 lines well in FS2004, but not in earlier releases—they all end up on one
line. The better alternative is to use my AdvDisplay.DLL module and have the four lines in a window of your sizing
and positioning, or even on a separate PC via WideFS and ShowText.

 20

FS Title Bar: The messages replace the FS title altogether. Only one is shown at a time, so this is only useful for
monitoring one value.

If the value requested is not available at any time the result will show “<invalid>”. When looking at some Engine or
other aircraft things, this can happen transiently, for instance whilst an aircraft is being loaded.

Al the monitoring selections are saved in the FSUIPC.INI file, in a section called [Monitor].

JoyNames
The INI file section [JoyNames] is fully described in its own chapter in the User Guide.

Profiles
If you opt to use the Profile facilities, to have different button, key, axis and calibration settings for a number of
types of aircraft (rather than specific named aircraft), then FSUIPC4 will create [Profile.<name>] sections in your
INI file. These take the name of the profile you request, for example “Jets”, “Props”, “Helos”, and simply contain a
list, in the usual 1=<name>, 2=<name> ... format, of those aircraft names which belong to the particular profile,
according to your assignments. Those aircraft names may be the full names, as when you assign in the FSUIPC4
options dialogue, or can be shortened or substring names, according to the “ShortAircraftNameOk” parameter
already mentioned.

Button Programming
FSUIPC’s options dialogue provides a page for programming button in all the main ways. Here we look at how this
programming is encoded in the FSUIPC.INI file, and how the programming can be extended to provide multiple
keystrokes and controls for a button, mixed if required, and to provide compound (conditional) actions—ones
depending on other buttons, switch settings and even previous keyboard presses. There are even facilities to make
Button actions depend upon values in offsets from the FSUIPC IPC interface, which really provides a wealth of
possibilities (for that part you will need to get the FSUIPC SDK too, as the offset listings are provided in that
package, in the Programmer’s Guide).

FSUIPC reloads all Button parameters each time the aircraft is changed in Flight Simulator, so you can edit theses
and test them out without having to reload Flight Sim every time.

Before embarking on the programming itself, several global parameters need to be described. These won’t appear in
the INI file unless you add them, and you only need to add them (in the main [Buttons] section) if you need
something other than the defaults:

InitialButton: This controls a facility to make FSUIPC perform one-off actions when FS is first loaded and running
(i.e. actually ready to fly). This is by programming a real or imaginary Button. Simply add the line
“InitialButton=j,b” to the [Buttons] section. The values of j (0–255) and b (0–31) can specify a real joystick and
button, or a non-existent one, it doesn’t matter. Real ones can have an action assigned on-line, in the Buttons option
page, but multiple actions for any button, real or not, can be accomplished by editing the INI file as described here.

IgnoreThese: This can be used to list a number of buttons which are to be ignored by FSUIPC in the Buttons &
Switches tab. This is to deal with faulty button signals which are repeating without control and thus preventing the
others from being registered on the screen ready to program. The parameter takes this form:

IgnoreThese= j.b, j.b, ...

listing the joystick number (j) and button number (b) of each button to be ignored. To make it easy, you can edit the
INI file whilst in the Button assignments dialogue and simply press “reload all buttons” to activate the changes.

Note that the action of ignoring buttons only applies to those numbered 0–31 on each possible joystick (not any
“POV” hats), and they are only ignored in the dialogue—if they are already assigned the assignment will still be
effective.

EliminateTransients: This can be added, and set to ‘Yes’, to eliminate short (transient) button press indications.
This is intended to help deal with some devices which create occasional spurious button press signals. It operates
only with locally-connected joysticks (but not EPIC or GoFlight devices).

Note that enabling this option may mean you have to consciously press buttons for slightly longer. It depends on the
PollInterval (below). A “transient” button indication is one which only exists for one poll, so a real press would

 21

have to last up to 50 mSecs (twice the default poll interval) to be sure of being seen (more, allowing for variations in
the polling due to processor/FS activity). You may find you need to adjust the PollInterval.

PollEpicButtons=Yes: Set this to No if you experience any difficulty getting FSUIPC to operate correctly on a
system with an EPIC installed but which you do not want to program via FSUIPC’s “Buttons” page.

ButtonRepeat=20,10: The first number here controls the button repeat rate, when repeating is enabled for a specific
button. The range is 1 to 100 and is the number of repeats per second. Note that the higher rates may not actually be
achievable. If you want no limit placed, allowing the repeats to go as fast as they can under each circumstance, set
this parameter to 0. This can be very fast, so beware!

Note that it is unlikely that this rate will be exactly maintained as it is subject to FS performance variations,
depending on the action being repeated, but it acts as a good target control value.

The second number gives an initial delay, before repetitions begin. This is in terms of how many potential repetitions
to miss, so with 20 repeats per second, 10 would give a delay of half a second. This allows the same button to
operate to increment/decrement a value just once, or, by holding the button down, repeat until released.

A value of 0 for the initial delay value means there will be no delay before the repeats start -- this is how FSUIPC
has been until the delay facility was added.

PollInterval=25: This parameter tells FSUIPC how often to read (“poll”) the joystick buttons. The time is in
milliseconds, and the default, as shown , is 25 (40 times a second) for Windows XP, but 50 (20 times per second) for
other Windows versions—the difference is to get around problems arising from the earlier USB drivers in those
systems..

A polling rate of 0 will stop FSUIPC4 looking at buttons altogether, and in fact this will remove the Buttons &
Switches tab from the FSUIPC4 options. This may come in useful for checking whether a rogue joystick driver is
causing problems.

A polling rate of 40 per second is more than adequate for all normal button programming. It is only when you come
to the more advanced uses that you may want to change this. Rotary switches, for instance, may give pulses so fast
that some are missed at such a rate.

Any value from 1 millisecond upwards can be specified, but those from 50 upwards result in a specific number of
“ticks” (55 mSecs) being used. i.e. 40-82 actually result in 55 (1 tick), 83-138 in 2 ticks, and so on. Ticks are also
approximate, in that they depend on the other activities and loading upon FS.

Values 1–59 milliseconds are actually handled by a separate thread in FSUIPC and give more accurate results, but
note that polling the joysticks too frequently may damage FS’s performance, and may even make its response to
joystick controls more precarious. No truly adverse effects have been noticed during testing on Windows XP, but it
is as well to be warned. If you think you need faster button polling, try values in the range 10–25, and make sure that
FS is still performing well each time.

NOTE: Do not use a polling interval lower than 50 if you are not using Windows XP, as you them may experience
odd hangs or other strange effects in Flight Simulator.

Note that the PFC and PFChid “emulated” joysticks (those with numbers 16 upwards) are polled four times more
frequently in any case—this is done because there is no overhead in doing so—there are no calls to Windows but
merely some data inspections. GoFlight buttons (joystick numbers even higher) aren’t polled at all—FSUIPC
receives a call from the GoFlight driver interface (GFDev.DLL) whenever an event occurs.

KeyboardFocus: When this is included and set to 'Yes' it ensures that any keypresses assigned to buttons (or sent by
external programs as FSUIPC controls) are directed to the main FS window for processing. This would normally be
the case except that folks using Windows external to FS might be changing the keyboard focus away from the main
FS window. Using a touchscreen, for instance, moves the keyboard focus even though it is the mouse which is
activated by touch. Setting KeyboardFocus=Yes makes FSUIPC restore focus to the main FS window every time it
is asked to send a keypress. The FS window will become the foreground window at the same time.

More ambitious users may wish to retain focus elsewhere for some keypresses. This can be performed using the
added FSUIPC control "key focus restore" (number 1125), as listed later in the Added controls list.

 22

FORMAT OF BUTTON DEFINITIONS

The button programming is saved in sections in the INI file. For globally operative buttons this is called [Buttons].
For aircraft-specific buttons it is [Buttons.<aircraft name>]. Up to 2048 separate entries defining button actions can
be included in each section, numbered from 0-2047, provided that the total of the definitions in the Global section
and the largest aircraft-specific section is not greater than 2048. The numbering is only important in that it
determines the order of actions for multiple assignments involving the same buttons, and doesn't need to be
sequential otherwise.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section
heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the
‘Yes’ option, FSUIPC will automatically select the section with the longest match. The ordering of sections in the
INI file is not relevant. However, with the ‘Substring’ option it will select the first section with a substring match –
there’s no concept of “longest match” in this case.

The basic format of each entry in the Buttons section is as follows:

For keypresses:
 <Entry number> = <Action><Joy#>,<Btn#>,K<key>,<shifts>

and for controls:
 <Entry number> = <Action><Joy#>,<Btn#>,C<control>,<parameter>
For macros (see the separate section on macros):
 <Entry number> = <Action><Joy#>,<Btn#>,CM<file#>:<ref#>,<parameter>

The format of the parameters becomes more complex for conditional actions, so they will be described later.

The <Entry number> is not material most of the time—except in sequences for single button presses/releases. It is
just a sequence number from 0–2047 (but limited to a total of 2048 entries for the general section plus any one
Aircraft-specific section).

Each entry must have a unique entry number, and the actual order is only important when multiple actions are
defined for the same button. FSUIPC will retain the numbering, and hence the order which the number (not the line
position) defines.

You can add comments following a semicolon (;) at the end of the line, and these will be retained. You can also
insert lines containing only comments, but they need an <Entry number> too, otherwise they may not retain their
relative position. Comments can contain up to 63 characters—longer ones will be truncated if and when the
[Buttons] section is re-written by FSUIPC.

<Action> is a single letter denoting the action being defined:

P Pulse the key press or control: i.e. do not hold the keys down whilst the button is held
down. This is always the case for controls, and should always be the case for any key
presses involving ALT key usage, because once the FS Menu is entered FSUIPC cannot
supply further changes like key releases.

H Hold the specified keys down until the button is released. (This doesn’t apply to Controls
and will be treated like P in their case). Do not use this with key presses involving ALT,
for the reason just given.

R Repeat the key press or control whilst the button is kept held down. The repeat rate is
approximately 6 per second and is not adjustable. Do not use this with key presses
involving ALT, for the reason already given.

U Pulse the key press or control when the button is released.

Any button can have a U entry as well as a P, H, or R entry. Provided the button only has one P, H or R, and/or one
U entry, and that when it does have two they are either both key presses or both controls, then the button
programming can be handled entirely in FSUIPC’s Buttons option page.

The <Joy#> identifies the joystick number (0–15 for normal joysticks, 16 upwards for PFC, GoFlight or other future
‘emulated’ joysticks) as displayed by FSUIPC, and the <Btn#> identifies the specific button (0–39), again as in
FSUIPC’s display. Of these buttons 0–31 are regular buttons and 32–39 are the 8 possible POV view angles, starting
forward and going clockwise every 45 degrees. (There are no emulated POVs so for joysticks 16 and upwards the
buttons numbers are always in the 0–31 range).

 23

Note that the Joystick numbers 0–15 may be replaced be an assigned letter (A–Z, omitting I and O) if the JoyNames
facility is being used to assign joysticks indirectly, in case their real ID numbers change.

When buttons on WideFS clients are programmed, the Joystick number also includes a Client PC number—1000 for
client 1, 2000 for client 2 and so on. The client numbering is actually handled by WideServer, which keeps a record
of Client PC names and assigns them numbers in the WideServer.ini file. You only need to worry about that when
changing PCs or renaming them.

For key presses, the <key> value following the letter ‘K’ is the virtual key code for the key to be pressed. Here’s a
list for convenience (but note that not all of these will be usable):

 0 Null (+ Alt, Shift etc alone)
 8 Backspace
 12 NumPad 5 (NumLock Off)
 13 Enter

19 Pause
20 CapsLock
27 Escape

 32 Space bar
 33 Page Up
 34 Page Down
 35 End
 36 Home
 37 Left arrow
 38 Up arrow
 39 Right arrow

40 Down arrow
44 PrintScreen

 45 Insert
 46 Delete
 48 0 on main keyboard
 49 1 on main keyboard
 50 2 on main keyboard
 51 3 on main keyboard
 52 4 on main keyboard
 53 5 on main keyboard
 54 6 on main keyboard
 55 7 on main keyboard
 56 8 on main keyboard
 57 9 on main keyboard
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 96 NumPad 0 (NumLock ON)
 97 NumPad 1 (NumLock ON)
 98 NumPad 2 (NumLock ON)
 99 NumPad 3 (NumLock ON)
 100 NumPad 4 (NumLock ON)

 101 NumPad 5 (NumLock ON)
 102 NumPad 6 (NumLock ON)
 103 NumPad 7 (NumLock ON)
 104 NumPad 8 (NumLock ON)
 105 NumPad 9 (NumLock ON)
 106 NumPad *
 107 NumPad +
 109 NumPad -
 110 NumPad .
 111 NumPad /
 112 F1
 113 F2
 114 F3
 115 F4
 116 F5
 117 F6
 118 F7
 119 F8
 120 F9
 121 F10
 122 F11
 123 F12
 124 F13
 125 F14
 126 F15
 127 F16
 128 F17
 129 F18
 130 F19
 131 F20
 132 F21
 133 F22
 134 F23
 135 NumPad Enter (or F24?)
 144 NumLock
 145 ScrollLock
 186 ; : Key*
 187 = + Key*
 188 , < Key*
 189 - _ Key*
 190 . > Key*
 191 / ? Key*
 192 ' @ Key*
 219 [{ Key*
 220 \ | Key*
 221] } Key*
 222 # ~ Key*
 223 ` ¬ ¦ Key*

225 'AX' key
226 "<>" or "\|"
 227 Help key
 228 00 key

 24

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is possible that keys
in the same relative position on the keyboard will respond similarly, so here is a positional description for those of you without UK
keyboards. This list is in left-to-right, top down order, scanning the keyboard:

 223 ` ¬ ¦ is top left, just left of the main keyboard 1 key
 189 - _ is also in the top row, just to the right of the 0 key
 187 = + is to the right of 189
 219 [{ is in the 2nd row down, to the right of the alpha keys.
 221]} is to the right of 219
 186 ; : is in the 3rd row down, to the right of the alpha keys.
 192 ' @ is to the right of 186
 222 # ~ is to the right of 192 (tucked in with the Enter key)
 220 \ | is in the 4th row down, to the left of all the alpha keys
 188 , < is also in the 4th row down, to the right of the alpha keys
 190 . > is to the right of 188
 191 / ? is to the right of 190

The <shifts> value is a combination (add them) of the following values, as needed:
1 Shift
2 Control
4 Tab
8 Normal (add this in anyway)
16 Alt (take care with this one—it invokes the Menu)
32 Windows key (left or right)
64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for key programming. Apologies for
this, which was a design oversight now too late to change]

If only “normal” is needed, the whole parameter and the preceding comma can be omitted. Usual values are:

 9 for shift+ …
 10 for control+ …
 11 for shift+control+ …

For FS controls the <control> is a number from 65536 upwards, denoting the specific FS control number. Lists of
these can be found in my various FS controls documents. In the FSUIPC Buttons page the controls are shown by name
normally, but if you want to try a control which has no name but might do something useful for you, enter it here, in
the INI file. In the Buttons page FSUIPC will show this by number instead of name.

The <parameter> for a control is optional – just omit this along with the preceding comma for most toggle/button type
controls. A parameter value of 0 will be assumed anyway.

Either or both of the <control> and <parameter> values can be provided in hexadecimal, preceded by an ‘x’ character.

As well as the FS controls, a number of additional FSUIPC controls are available. These range from 1000 to 3000, and
also values ‘xcc00zzzz’ (in hexadecimal) which encode the FSUIPC “Offset” controls. See the list below the
discussion on ‘Keys’ for full details.

SEQUENCES, COMBINATIONS, and MIXTURES

The Buttons page in the FSUIPC options is deliberately kept rather simple, hiding some of the programming
possibilities. By editing the INI file you can do more:

• Hold one key down whilst pressing another

• Press and release a sequence of keys

• Mix key presses and FS controls in one button operation

• Make button actions conditional on the state of other buttons (see ‘Compound’ buttons, below)

• Make button actions conditional on values in FSUIPC offsets (see ‘Adding offset conditions’, below)

The first three are simply done by defining the actions in separate entries, each referring to the same joystick/button
number. I’d recommend you first use the Buttons page to get the initial action programmed (this making sure you have

 25

the right button number), then close FS and edit the entries already made in the INI file. The only important thing is to
number the entries in sequence – preferably, but not necessarily, consecutively.

Examples:

 16=H1,2,K69,8
 17=H1,2,K49,8

Presses and holds the ‘E’ key then presses and holds the ‘1’ key, so both are pressed together. They are both released
(in the same order) when the button is released.

 18=P1,3,K69,8
 19=P1,3,K49,8
 20=P1,3,K50,8
 21=P1,3,K51,8
 22=P1,3,K52,8

Presses and releases ‘E’, then ‘1’, ‘2’, ‘3’, and ‘4’ in rapid succession, selecting all Engines.

 23=P2,3,K76,24
24=P2,3,K65,8
25=P2,3,K69,8

Presses and releases ALT+L then A then E, is very rapid succession! FSUIPC leaves no delays at all between actions
when the ALT key has been used. Otherwise, as soon as it allows the processing of the keys to begin, the ALT key
combination will bring up the menu item and (in this case) dialogue, and FSUIPC will not be running and will
therefore not be able to provide the key releases. Horrible mix-ups may then ensue! <G>

This last example is a real one I am actually using. The ALT+L gets the Lago menu, the ‘A’ selects FSAssist, and the
‘E’ selects the Pushback with Engine Start. This puts you in the pushback dialogue, but then you are into using the
mouse, I’m afraid. FSUIPC can help no more.

COMPOUND BUTTON CONDITIONS

Facilities are included to allow you to specify actions for one button which are dependent on the state of another
button (or more likely, switch). This by using what I call “Compound” button programming—though it could equally
be “Conditional” or “Co-operative”. Anyhow, I use the letter C in the definitions, as follows:

n=CP(+j2,b2)j,b,
n=CU(+j2,b2)j,b, ...
n=CP(–j2,b2)j,b, ...
n=CU(–j2,b2)j,b, ...

Here the ‘C’ denotes compound button checking, whilst P = pulse on pressing, U = pulse on releasing, as before. You
can also use CR in place of CP for a repeating action—the repeats continue whilst all the conditions are true. There is
no facility for the Hold action with the compound facilities.

Inside the parentheses are details of the secondary button, which must be in a certain condition for the current button
to operate:

(+j2,b2) means that button b2 on joystick j2 must be pressed ("on") for the current button action (for j,b) to be
obeyed.

(–j2,b2) means that button b2 on joystick j2 must be released ("off") for the current button action (for j,b) to
be obeyed.

The j,b, ... part is the usual button parameter, for the action of the “current” button which is button b on joystick j.

You can have one condition, as shown above, or two, or more (up to 16 in fact), like this:

 n=CP(+j2,b2)(+j3,b3)j,b,

where, now, both the parenthesised conditions must be met for the ‘j,b’ button action to result in the defined event.

 26

The conditions can be made to apply not to the current state of a button, but to the state of a ‘flag’ that is set and
cleared by a button (or even a keypress). For every possible “normal” button (16 joysticks x 32 buttons = 512 buttons)
FSUIPC maintains a “Flag” (F). Each time any button is pressed (goes from off to on) FSUIPC toggles its flag. This
makes the buttons flag a sort of “latching” switch. You can test it in any parenthesised condition by preceding the
condition by F, thus:

 N=CP(F+j2,b2) …

This says the rest of this parameter is obeyed if the Flag associated with j2,b2 is set. A condition (F–j2,b2) tests for the
Flag being clear. Note that the actual current state of the button j2,b2 is not relevant. All that matters is whether it last
left its Flag set or clear.

Any of the conditions in a multiple-conditioned setting may be on Flags.

These Button Flags can also be set, cleared and toggled by three special FS controls, Button Flag Set (C1003),
Button Flag Clear (C1004), and Button Flag Toggle (C1005). In all three cases the Joystick (0–15 only) and Button
(0–31) referenced is given in the Parameter, by a value calculated as:

 256 * J + B (for example, Joystick 15, Button 31 would be 3871).

These three controls are listed in the FSUIPC options drop downs for assignment in both the Buttons and Keys pages,
so you can program them there, or here in the INI file. With these themselves as controls resulting for conditional
button actions, you can influence conditions for button actions in a whole multitude of ways.

One point to note: since you can use the keyboard or other compound button actions to set, clear or toggle the flags,
the actual button for which the Flag is assigned does not actually need to exist!

Okay. Now what does this really mean? Some simpler examples will suffice here. I leave it to the more imaginative
amongst you to come up with some really complex applications! <G>

First, it means that you can assign multiple uses to any number of buttons by making them conditional on a number of
others. For example, a 12-position latching rotary switch could be wired to operate buttons 1 to 12 on joystick 1. Then
for any other button I can program 12 different actions. For example, button 0,3 could have twelve different actions
assigned, like this:

1=CP(+1,1)0,3, ...
2=CP(+1,2)0,3, ...
3=CP(+1,3)0,3, ...
...
12=CP(+1,12)0,3, ...

and so on. For example, you may have a set of assignments for ground operations, a set for take-off, a set for climb, a
set for cruise, and so on.

Second, to economise sensibly on the use of buttons, where you really need a toggle you can make any button toggle
between two actions by using a flag as a condition. For example, suppose your button is Joy 11, button 3, and a spare
flag (a button on joysticks 0-15 not otherwise used) is 15, 2. Program your button with three lines in FSUIPC (the
numbers on the left need to be sequential with whatever's there already, but I'll assume you have no others so will start
with 1):

1=P11,3,C1005,3842

This says execute Control 1005 whenever your button is pressed. Control 1005 is "Button Flag Toggle". The
parameter '3842' identifies the Flag: 256 x joystick 15 + button 2. So, this flag will now alternate between being set
and clear each time you press the button.

2=CP(F+15,2)11,3, ...

This tells FSUIPC what to do if the button is pressed AND the flag is set. Replace the ... part by the Control number
and parameter for one of the actions you need.

3=CP(F-15,2)11,3, ...

Similarly, this tells FSUIPC what to do when the button is pressed and the flag is not set.

 27

Third, you can now program those two-phase type rotary switches, the ones where turning the spindle one way gives
pulses on two lines phase shifted one way, and turning the spindle the other way gives the opposite phase relationship.

Say the inputs from the rotary are on Joystick 1, Buttons 1 and 2. When B1 is ON and B2 goes from off to on, then the
spindle has turned one way. When B1 in ON and B2 goes from on to off, the spindle has turned the other. That is the
simplest example:

1=CP(+1,1)1,2, ... turn direction 1 action
2=CU(+1,1)1,2, ... turn direction 2 action

You can also have double speed action, operating on every off to on and on to off change of B2. Just add two more
conditions:

3=CP(–1,1)1,2, ... turn direction 2 action (B2 goes off to on when B1 is off)
4=CU(–1,1)1,2, ... turn direction 1 action (B2 goes on to off when B1 is off).

Since the whole thing is completely symmetric (there is no reason why B1 should control B2, it could also be the other
way around), you can actually program it to act on ALL edges of both buttons, by adding another 4 conditions:

5=CP(+1,2)1,1, ... turn direction 2 action (B1 goes off to on when B2 is on)
6=CU(+1,2)1,1, ... turn direction 1 action (B1 goes on to off when B2 is on)
7=CP(–1,2)1,1, ... turn direction 1 action (B1 goes off to on when B2 is off)
8=CU(–1,2)1,1, ... turn direction 2 action (B1 goes on to off when B2 is off)

So, you can effectively choose how many pulses you will get for a given turning rate. As you can see, you can get
rates of 1x, 2x or 4x—even 3x if you do one part for only half the changes! Note that for reliability at higher speeds
you may need to reduce the PollInterval.
By the way, it is with some of these rotary switches where the double condition facility can come in very useful. If
you have a single rotary of this type with also a push button action available, you can program it to adjust both the
units and fractions of, say, a radio receiver. Just use the Flag associated with the button action to choose between one
pair of actions or another, thus, supposing 1,3 to be the button:

1=CP(F+1,3)(+1,1)1,2, ... increment fraction
2=CU(F+1,3)(+1,1)1,2, ... decrement fraction
3=CP(F–1,3)(+1,1)1,2, ... increment integer
4=CU(F–1,3)(+1,1)1,2, ... decrement integer

One last thing. Using several rotaries of this type (that is, with the two signals in different phase relationships to
indicate direction of turning), if they are of the type that have both signals ‘off’ in the detent you can save button
connections by making one of them (on each one) common. If you do this you can only turn one of them at a time, but
this is probably a worthwhile restriction if you are getting short of button connections.

ADDING OFFSET CONDITIONS

As well as all the above (and below, for Keys) any or all entries in all Buttons and Keys sections of
FSUIPC.INI can each contain a single condition based on the value of bits, bytes, words or double words in
the FSUIPC IPC interface. These values are addressed by an “offset” value in hexadecimal and include just
about anything you can think of about what is happening in FS.

Just taking some examples, you can make conditions based on whether the aircraft is airborne or on the
ground, whether the engines are running, whether one or more of specific lights are switched on or off,
whether the gear is up or down, and even whether there are valid radio signals for NAV1, NAV2, GS, ILS
LOC, and so on. The possibilities are endless!

To make good use of this you will need the Programmer’s Guide, which lists all of the offsets. This
document is in the FSUIPC SDK. You’ll find a lot of data in there that you cannot make use of—the
conditions here deal with bits or values in 8-bit bytes, 126-bit words and 32-bit “double words”. You
cannot make use of string values, tables ot floating point values.

 28

You add an offset condition to any Key or Button parameter line in FSUIPC.INI as follows:

<sequence number>=<offset condition> <usual parameter>

The space between the new condition and the normal parameter is essential.

A simple example will help. Take this button push parameter, designed to toggle the landing gear when the
button is pushed:

 1=P1,0,C65570,0

By adding an offset condition we can stop this doing anything when the aircraft is on the ground:

 1=W0366=0 P1,0,C65570,0

The inserted part, “W0366=0” specify that the Word (16-bit or 2-byte value) at offset 0366 must be zero for
this line to be obeyed. Offset 0366 contains 0 when the aircraft is airborne, 1 when it is on the ground.

The format of the condition is:

 <size><offset><mask><condition>

where

<size> is B for Byte, W for Word or D for Double Word,

<offset> is the FSUIPC offset, an hexadecimal value between 0000 and FFFF,

<mask> is optional, and if given selects one of more bits: specify as &x where ‘x’ is the 8, 16
or 32-bit mask in hexadecimal. The value in the offset is “ANDed” with this mask
before being used,

<condition> is one of:

 =value for equality

 !value for inequality

 <value for less than

 >value for greater than

 and the “value” here is decimal unless preceded by an x (or X) in which case it is
hexadecimal like the offset and mask. FSUIPC will output hexadecimal where a mask
is used, otherwise decimal. All values are treated as unsigned.

The optional mask facility is useful for testing specific bits, as in the case of the light switches in offset
0D0C or the radio reception details in offset 3300. For example, the offset condition:

 W3300&0040!0

is TRUE when the currently tuned NAV1 is for an ILS.

The <condition> part is optional too, defaulting to !0 when omitted, so this last example could be
abbreviated to:

 W3300&0040

For Project Magenta users who sometimes use the default FS autopilot instead one very useful condition is
simply:

 W0500

Offset 0500 is non-zero when PM’s MCP is running, zero otherwise, so you can program buttons and keys
to operate PM when it is running, but FS otherwise.

 29

Finally, for clever switching you may want to consider using one button to adjust an FSUIPC offset value
which then, via offset conditions, selects between a number of alternative button and/or key assignments.
To assist in this, offsets 66C0 to 66FF are reserved purely for you to do with as you like. The offset cyclic
increment/decrement controls allow, say, a byte value in offset 66C0 to cycle throgh a number of vlues,
then each value selects particular actions for defined keys or buttons. The entries in Buttons or Keys might
look like this:

31=P174,10,Cx510066C0,x00030001
32=B66C0=0 P117,6,C1030,0
33=B66C0=1 P117,6,C1034,0
34=B66C0=2 P117,6,C1038,0
35=B66C0=3 P117,6,C1042,0

Here the value in the Byte at offset 66C0 is cycled from 0–3, and back to 0, by button 174,10, and this
value, in turn, selects what happens with button 117,6.

These are real examples related to programming of a Go-Flight GF45 unit for different frequency
adjustments.

ERRORS IN BUTTON PARAMETERS

When the [Buttons] sections are read (or re-read via the “Reload” button in the FSUIPC Buttons page), the lines are
thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error message
is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press “Reload” again to re-check
it. You don’t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you. If
it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)
2 Offset condition: the offset is too big (more than 4 hex digits)
3 Offset condition: the ‘&mask’ part has no hexadecimal mask
4 Offset condition: the mask is too big (more than 8 hex digits)
5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)
6 Offset condition: comparison value X for hex, not followed by hex value
7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)
8 Offset condition: no decimal or Xhex value after =, !, < or >.
9 Button operation not specified as H, P, R, U or C
10 Conditional button operation, no P, R or U after the C
11 Too many (…) button conditions
12 Condition joystick number too big
13 Button number omitted in condition (the ,b in (j,b))
14 No matching) found for (condition
15 Button number cannot be > 31 in condition
16 Main button joystick number is too big
17 Main button number is greater than 39
18 Comma (,) missing after main button number
19 The C or K needed for Control or Key is missing
20 Unknown formatting, syntax unintelligible

 30

Keyboard Programming
FSUIPC’s options dialogue provides a page for programming keypresses to assign specific single FS controls. Here
we look at how this programming is encoded in the FSUIPC.INI file, and how the programming can be extended to
provide multiple controls for a single keystroke combination.

FORMAT OF KEY DEFINITIONS

The key programming is saved in sections in the INI file. For globally operative keys this is called [Keys]. For
aircraft-specific buttons it is [Keys.<aircraft name>]. Up to 1024 separate entries defining key actions can be included
in each section, normally numbered sequentially from 0, provided that the total of the definitions in the Global section
and the largest aircraft-specific section is not greater than 1024.

As with the Button parameters, Key press entries are reloaded each time you change aircraft in Flight Sim, so you can
make changes in the INI file and test them without reloading FS.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section
heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the
‘Yes’ option, FSUIPC will automatically select the section with the longest match. The ordering of sections in the INI
file is not relevant. However, with the ‘Substring’ option it will select the first section with a substring match – there’s
no concept of “longest match” in this case.

The format of each entry in the Keys section is as follows:

n=key,shifts,control,parameter

for a key press action only, or

n=key,shifts,control1,parameter1,control2,parameter2

for a key with press (1) and release (2) actions.

Here n can run from 0 to 1023 (i.e. maximum 1024 different keystroke actions can be added),
key virtual keycode, as in the FS CFG file (see list above, in the section about Buttons).

Note: If the key press automatic repeats are to be ignored, this code is preceded by the letter ‘N’.
shifts 8 normal

+1 shift
+2 control
+4 alt (not really very useful)
+16 tab (an added "shift" to give more combinations)
+32 Windows key (left or right)
+64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for button
programming. Apologies for this, which was a design oversight now too late to change]

control FS control number (as in my lists), or special FSUIPC number for additional controls. This
can be in decimal, or, preceded by ‘x’ in hexadecimal. The additional FSUIPC controls
range from 1000 to 3000, and also values xcc00zzzz in hexadecimal which encode the
FSUIPC “Offset” controls. See list below for full details.

parameter value to go with control, for "SET" types and some special FSUIPC controls. This also is
normally in decimal, but can be in hexadecimal preceded by ‘x’.

You can do all of this programming directly in the FSUIPC “Keys” page whilst in FS. In fact it is better to do it there,
so you can test it out directly. Note that some of the listed FS controls either do not work, or do not do as you might
suppose! And some seem to be mixed up—for instance the “Zoom Out” and “Zoom In” controls appear to be
switched, even though the Fine variants of these are okay.

There are two reasons you may want to edit the details in the INI file. The first is to make a single button press operate
more than one control. You can specify such actions here, merely by adding the appropriate parameter lines. The

 31

controls will be sent in the order of the parameter entries (i.e. the ‘n’ in “n= …”). You can view all these, and delete
them, in the Keys page on-line, but you cannot edit any other than the first such assignment for that key press.

The second reason is to add FSUIPC offset conditions. The facilities for making Button presses conditional upon
assorted FS internals all apply to Key programming too, and the format and other details are the same as for Buttons.
Please refer to the section above entitled “adding Offset Conditions”.

ERRORS IN KEY PARAMETERS

When the [Keys] sections are read (or re-read via the “Reload” button in the FSUIPC Keys page), the lines are
thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error message
is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press “Reload” again to re-check
it. You don’t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you. If
it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)
2 Offset condition: the offset is too big (more than 4 hex digits)
3 Offset condition: the ‘&mask’ part has no hexadecimal mask
4 Offset condition: the mask is too big (more than 8 hex digits)
5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)
6 Offset condition: comparison value X for hex, not followed by hex value
7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)
8 Offset condition: no decimal or Xhex value after =, !, < or >.
20 Unknown formatting, syntax unintelligible
21 Virtual key number not in range 1–255
22 No comma (,) after key number
23 No comma (,) after shift code value
24 Bad control value

 32

Additional “FS” Controls added by FSUIPC
All the true FS controls are represented by numbers above 65536. They are listed in my FS-version specific
documents called “FSxxxx Controls …”. FSUIPC has augmented these with its own set, programmable for both
Button and Keys, and these utilise lower numbers, currently in the 1000–3000 range. These are:

1001 PTT on (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)
1002 PTT off (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)
1003 Set button flag (param = 256*joy + btn, or JjBb)
1004 Clear button flag (param = 256*joy + btn, or JjBb)
1005 Toggle button flag (param = 256*joy + btn, or JjBb)
1006 KeySend to WideClients (param = KeySend number, 1–255)
1007 Autobrake Set (param=0 for RTO, 1=off, 2-5 for 1,2,3,Max)
1008 Traffic Density Set (param = 0–100 %), FS2004 only
1009 Traffic Density Toggle (param = 0–100 %), FS2004 only
1010 Spoiler inc (by 512 or amount set in SpoilerIncrement= INI parameter
1011 Spoiler dec (by 512 or amount set in SpoilerIncrement= INI parameter
1012 Traffic labels set (param selects data in labels, see User Guide), FS2004 only
1013 Traffic labels toggle, FS2004 only
1014 Traffic labels on, FS2004 only
1015 Traffic labels off, FS2004 only
1016 Ap Alt Var Dec Fast (–1000)
1017 Ap Alt Var Inc Fast (+1000)
1018 Ap Mach Var Dec Fast (–.10)
1019 Ap Mach Var Inc Fast (+.10)
1020 Ap Spd Var Dec Fast (–10)
1021 Ap Spd Var Inc Fast (+10)
1022 Ap Vs Var Dec Fast (–1000)
1023 Ap Vs Var Inc Fast (+1000)
1024 Heading Bug Dec Fast (–10)
1025 Heading Bug Inc Fast (+10)
1026 Vor1 Obi Dec Fast (–10)
1027 Vor1 Obi Inc Fast (+10)
1028 Vor2 Obi Dec Fast (–10)
1029 Vor2 Obi Inc Fast (+10)
1030 Com1 use whole inc
1031 Com1 use whole dec
1032 Com1 use frac inc
1033 Com1 use frac dec
1034 Com2 use whole inc
1035 Com2 use whole dec
1036 Com2 use frac inc
1037 Com2 use frac dec
1038 Nav1 use whole inc
1039 Nav1 use whole dec
1040 Nav1 use frac inc
1041 Nav1 use frac dec
1042 Nav2 use whole inc
1043 Nav2 use whole dec
1044 Nav2 use frac inc
1045 Nav2 use frac dec
1046 Adf1 use whole inc
1047 Adf1 use whole dec
1048 Adf1 use frac inc
1049 Adf1 use frac dec
1050 Adf2 use whole inc
1051 Adf2 use whole dec
1052 Adf2 use frac inc
1053 Adf2 use frac dec
1054 Xpndr low NN inc
1055 Xpndr low NN dec

 33

1056 Xpndr high NN inc
1057 Xpndr high NN dec
1058 Freeze pos on
1059 Freeze pos off
1060 Freeze pos toggle
1061 Engine 1 Autostart
1062 Engine 2 Autostart
1063 Engine 3 Autostart
1064 Engine 4 Autostart
1065 Throttles off
1066 Throttles on
1067 Throttles toggle
1068 PVT voice transmit on (for Squawkbox 3.0.4 or later)
1069 PVT voice transmit off (for Squawkbox 3.0.4 or later)
1070 Key Press and Release (param is Keycode + 256*Shift code, or JsBk)
1071 Key Press/Hold (param is Keycode + 256*Shift code, or JsBk)
1072 Key Release (param is Keycode + 256*Shift code, or JsBk)
1073 Advdisplay & FSUIPC display window toggle
1079 Traffic Zapper
1080 Wheel trim toggle (for mousewheel trim adjusting)
1081 Wheel trim faster
1082 Wheel trim slower
1083 Wheel trim speed toggle
1084 Lua Kill All
1085 Traffic Zapall
1114 List local panel variables (“L:vars”) in log when change aircraft
1115 IYP Listen On
1116 IYP Listen Off
1117 IYP ComeFly Active
1118 IYP ComeFly Inactive
1119 Xpndr stby (sb3)
1120 Xpndr on/mode c (sb3)
1121 Xpndr toddle (sb3)
1122 Xpndr ident (sb3)
1124 Com1/2 tx switch
1125 Key focus restore
1126 Nothing: no action
1130 Mousebutton swap
1140 Throttle sync off
1141 Throttle sync on
1142 Throttle sync toggle

 FSUIPC autopilot controls:
1930 FSUIPC bank hold off
1931 FSUIPC bank hold on
1932 FSUIPC bank hold set
1933 FSUIPC bank hold toggle
1934 FSUIPC mach hold off
1935 FSUIPC mach hold on
1936 FSUIPC mach hold set
1937 FSUIPC mach hold toggle
1938 FSUIPC pitch hold off
1939 FSUIPC pitch hold on
1940 FSUIPC pitch hold set
1941 FSUIPC pitch hold toggle
1942 FSUIPC speed hold off
1943 FSUIPC speed hold on
1944 FSUIPC speed hold set
1945 FSUIPC speed hold toggle

 34

Project Magenta controls:
2010 PM MCP SPD push on B747
2011 PM MCP HDG sel on B747
2012 PM MCP ALT push on B747
2013 PM MCP FD2 off
2014 PM MCP FD2 on
2015 PM MCP A/T on
2016 PM MCP A/T off
2017 PM MCP THR mode button
2018 PM MCP SPD mode button
2019 PM MCP Mach/IAS sel
2020 PM MCP FLCH mode button
2021 PM MCP HDG mode button
2022 PM MCP VNAV mode button
2023 PM MCP LNAV mode button
2024 PM MCP LOC mode button
2025 PM MCP APP mode button
2026 PM MCP ALT mode button
2027 PM MCP VS mode button
2028 PM MCP AP1 (L) button
2029 PM MCP AP2 (C) button
2030 PM MCP AP3 (R) button
2031 PM MCP FD1 off
2032 PM MCP FD1 on
2033 PM MCP AP Disc (not 747)
2034 PM MCP AP Eng (not 747)
2035 PM MCP AP Disc (747 only)
2036 PM AB LS button
2037 PM AB STD QNH rel (push)
2038 PM AB STD QNH set (pull)
2039 PM AB SPD button push
2040 PM AB SPD button pull
2041 PM AB HDG button push
2042 PM AB HDG button pull
2043 PM AB ALT button push
2044 PM AB ALT button pull
2045 PM AB VS button push
2046 PM AB VS button pull
2047 PM AB EXPED button
2048 PM AB TRKFPA button
2049 PM PFD Decision Ht Dec
2050 PM PFD Decision Ht Inc
2051 PM MCP Hdg Dec 1
2052 PM MCP Hdg Inc 1
2053 PM MCP Hdg Dec 10
2054 PM MCP Hdg Inc 10
2055 PM MCP Alt Dec 100
2056 PM MCP Alt Inc 100
2057 PM MCP Alt Dec 1000
2058 PM MCP Alt Inc 1000
2059 PM MCP Spd Dec 1/.01
2060 PM MCP Spd Inc 1/.01
2061 PM MCP Spd Dec 10/.10
2062 PM MCP Spd Inc 10/.10
2063 PM MCP V/S Dec 100
2064 PM MCP V/S Inc 100
2065 PM MCP Crs Dec 1
2066 PM MCP Crs Inc 1
2067 PM QNH Dec 0.01/1
2068 PM QNH Inc 0.01/1
2069 PM ND Range Dec
2070 PM ND Range Inc
2071 PM ND Mode Dec

 35

2072 PM ND Mode Inc
2073 PM ND2 Range Dec
2074 PM ND2 Range Inc
2075 PM ND2 Mode Dec
2076 PM ND2 Mode Inc
2077 PM AB ND ILS Mode
2078 PM ND Map Arc Mode
2079 PM ND Map Ctr Mode
2080 PM ND Rose Mode
2081 PM ND Map Plan Mode
2082 PM ND Range 10
2083 PM ND Range 20
2084 PM ND Range 40
2085 PM ND Range 80
2086 PM ND Range 160
2087 PM ND Range 320
2088 PM ND Range 640
2089 PM ND VOR display
2090 PM ND NDB display
2091 PM ND WPT display
2092 PM ND ARPT display
2093 PM ND DATA display
2094 PM ND POS display
2095 PM AB ND VOR1 on
2096 PM AB ND ADF1 on
2097 PM AB ND VORADF1 off
2098 PM AB ND VOR2 on
2099 PM AB ND ADF2 on
2100 PM AB ND VORADF2 off
2101 PM AB ND Metric
2102 PM AB ND HDGVS/TRKFPA
2103 PM AB THR TOGA
2104 PM AB THR FLX/MCT
2105 PM AB THR CLB
2106 PM AB THR IDLE
2107 PM AB THR REV IDLE
2108 PM AB THR MAX REV
2109 PM AB ND2 ILS Mode
2110 PM ND2 Map Arc Mode
2111 PM ND2 Map Ctr Mode
2112 PM ND2 Rose Mode
2113 PM ND2 Map Plan Mode
2114 PM ND2 Range 10
2115 PM ND2 Range 20
2116 PM ND2 Range 40
2117 PM ND2 Range 80
2118 PM ND2 Range 160
2119 PM ND2 Range 320
2120 PM ND2 Range 640
2121 PM ND2 VOR display
2122 PM ND2 NDB display
2123 PM ND2 WPT display
2124 PM ND2 ARPT display
2125 PM ND2 DATA display
2126 PM ND2 POS display
2127 PM AB ND2 VOR1 on
2128 PM AB ND2 ADF1 on
2129 PM AB ND2 VORADF1 off
2130 PM AB ND2 VOR2 on
2131 PM AB ND2 ADF2 on
2132 PM AB ND2 VORADF2 off
2133 PM AB ND2 Metric
2134 PM AB ND2 HDGVS/TRKFPA

 36

2135 PM EICAS Show Controls
2136 PM EICAS Standby Gauge
2137 PM EICAS Page Dec
2138 PM EICAS Page Inc
2139 PM EICAS Synoptic Dec
2140 PM EICAS Synoptic Inc
2141 PM AB ND ILS Mode
2142 PM ND Plan Wpt Dec
2143 PM ND Plan Wpt Inc
2950 PM Elec All Toggle
2951 PM Elec PFD Toggle
2952 PM Elec ND Toggle
2953 PM Elec EICAS Toggle
2955 PM Elec PFD2 Toggle
2956 PM Elec ND2 Toggle
2958 PM Elec Stdby Toggle
2966 PM Elec All ON
2967 PM Elec PFD ON
2968 PM Elec ND ON
2969 PM Elec EICAS ON
2971 PM Elec PFD2 ON
2972 PM Elec ND2 ON
2974 PM Elec Stdby ON
2982 PM Elec All OFF
2983 PM Elec PFD OFF
2984 PM Elec ND OFF
2985 PM Elec EICAS OFF
2987 PM Elec PFD2 OFF
2988 PM Elec ND2 OFF
2990 PM Elec Stdby OFF"
2994 PM Whazzup keys (by Param), see PM offsets list, 542E
2995 PM Quickmap keys (by Param), see PM offsets list, 542C
2996 PM GC keys (by Param), see PM offsets list, 542A
2997 PM CDU keys (by Param), see PM offsets list, 5428
 Note: all the “Keys” inputs to PM modules provide efficient ways of directing specific keypresses to

them, wherever they may be on the Network. The parameter in these is the keystroke code (see the
list earlier in this document) , plus specific PM-defined values for shifts, thus:

 256 for Shift, 512 for Ctrl, 1024 for Alt.
 You don’t need to worry about changing other bits when two codes are the same—FSUIPC takes care

of that automatically.

2998 PM MCP Kcodes (by Param), see Pm offsets list, 04F2
 This way of controlling the PM MCP may offer some features not found elsewhere. The parameter is

the number used in the Elan Informatique “Knnn” codes normally sent to the MCP via a serial
connection. Please refer to the PM offsets document for further information:

2999 Project Magenta GC Controls. Param specifies action, (see the list in the Project Magenta “Offsets”

publication)

 37

FSUIPC Offset Controls:
x0100zzzz Offset Byte Set (offset = zzzz), hexadecimal
x0200zzzz Offset Word Set (offset = zzzz), hexadecimal
x0300zzzz Offset Dword Set (offset = zzzz), hexadecimal
x0500zzzz Offset Byte Setbits (offset = zzzz), hexadecimal
x0600zzzz Offset Word Setbits (offset = zzzz), hexadecimal
x0700zzzz Offset Dword Setbits (offset = zzzz), hexadecimal
x0900zzzz Offset Byte Clrbits (offset = zzzz), hexadecimal
x0A00zzzz Offset Word Clrbits (offset = zzzz), hexadecimal
x0B00zzzz Offset Dword Clrbits (offset = zzzz), hexadecimal
x0D00zzzz Offset Byte Togglebits (offset = zzzz), hexadecimal
x0E00zzzz Offset Word Togglebits (offset = zzzz), hexadecimal
x0F00zzzz Offset Dword Togglebits (offset = zzzz), hexadecimal
x1100zzzz Offset UByte Increment (offset = zzzz), hexadecimal *
x1200zzzz Offset UWord Increment (offset = zzzz), hexadecimal *
x1300zzzz Offset UDword Increment (offset = zzzz), hexadecimal *
x2100zzzz Offset UByte Decrement (offset = zzzz), hexadecimal *
x2200zzzz Offset UWord Decrement (offset = zzzz), hexadecimal *
x2300zzzz Offset UDword Decrement (offset = zzzz), hexadecimal *
x3100zzzz Offset SByte Increment (offset = zzzz), hexadecimal *
x3200zzzz Offset SWord Increment (offset = zzzz), hexadecimal *
x3300zzzz Offset SDword Increment (offset = zzzz), hexadecimal *
x4100zzzz Offset SByte Decrement (offset = zzzz), hexadecimal *
x4200zzzz Offset SWord Decrement (offset = zzzz), hexadecimal *
x4300zzzz Offset SDword Decrement (offset = zzzz), hexadecimal *
x5100zzzz Offset Byte Cyclic Increment (offset = zzzz), hexadecimal *
x5200zzzz Offset Word Cyclic Increment (offset = zzzz), hexadecimal *
x5300zzzz Offset Dword Cyclic Increment (offset = zzzz), hexadecimal *
x6100zzzz Offset Byte Cyclic Decrement (offset = zzzz), hexadecimal *
x6200zzzz Offset Word Cyclic Decrement (offset = zzzz), hexadecimal *
x6300zzzz Offset Dword Cyclic Decrement (offset = zzzz), hexadecimal *
x7000zzzz Offset Float32 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7400zzzz Offset Float64 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7800zzzz Offset Float32 Inc/1000 (offset = zzzz): the parameter is divided by 1000
x7C00zzzz Offset Float64 Inc/1000 (offset = zzzz): the parameter is divided by 1000
 (For “decrements” use a negative parameter in the increment controls)

 * The fixed point increment/decrement values operate on Unsigned (U) or Signed (S) values, and have a

parameter with the unsigned or signed limit in the upper 16 bits and the increment/decrement amount (always
unsigned) in the lower 16 bits. This applies even to the Dword (i.e. 32 bit) inc/dec controls.

FSUIPC directly assigned axis controls

 All of the "direct to FSUIPC calibration" axes are effectively added FSUIPC controls and can be sent using
these values:

64101 Aileron
64102 Elevator
64103 Rudder
64104 Throttle
64105 PropPitch
64106 Mixture
64107 LeftBrake
64108 RightBrake
64109 Throttle1
64110 Throttle2
64111 Throttle3
64112 Throttle4
64113 Mixture1
64114 Mixture2

64115 Mixture3
64116 Mixture4
64117 PropPitch1
64118 PropPitch2
64119 PropPitch3
64120 PropPitch4
64121 ElevatorTrim
64122 Spoilers
64123 Flaps
64125 Reverser
64127 Aileron Trim
64128 Rudder Trim
64129 CowlFlaps1
64130 Cowlflaps2

64131 Cowlflaps3
64132 Cowlflaps4
64133 PanHeading
64134 PanPitch
64135 PanTilt
64136 SteeringTiller
64137 SlewAlt
64138 SlewSide
64139 SlewAhead
64140 SlewHeading
64141 Reverser1
64142 Reverser2
64143 Reverser3
64144 Reverser4

 38

Macro Controls
FSUIPC will read any file in the Modules folder which has file type “mcro”. Such files contain definitions of
additional controls to be listed and assignable in FSUIPC's Keys, Buttons and Axis Assignments dialogues. All
macro files are also re-read and re-installed whenever the Reload button in any of those three dialogues are used.

It is important that the file name (xxxx.mcro) be unique in the first 16 characters, as this will be used as part of the
name of the added controls in the drop-downs. Best to keep the names short and to the point—probably the name of
the program or program function for which the controls are being added.

Inside a macro file there should be just one section called [Macros]. This must contain definitions of numbered
controls, with names also up to 16 characters. These names only have to be unique in that file.

Here is an example, here for a possible Project Magenta glass cockpit ND Mode switch:

[Macros]
1=MAP Capt=C2999,1
2=NAV Capt=C2999,2
3=VOR Capt=C2999,3
4=PLN Capt=C2999,4
5=APP Capt=C2999,5
6=CTR Capt=C2999,6
101=MAP F/O=C2999,101
102=NAV F/O=C2999,102
103=VOR F/O=C2999,103
104=PLN F/O=C2999,104
105=APP F/O=C2999,105
106=CTR F/O=C2999,106

Note that the numbers on the left do not have to be contiguous, but must be in the range 1–999 inclusive. These will
be used internally, and in the FSUIPC INI file, to identify the control within the file.

Supposing the example above occurred in a file called ‘PM GC.mcro’. The names which would then appear, in
proper alpha sequence in the FSUIPC drop-downs, would be:

PM GC: APP Capt
PM GC: APP F/O
PM GC: CTR Capt
PM GC: CTR F/O
PM GC: MAP Capt
PM GC: MAP F/O
PM GC: PLN Capt
PM GC: PLN F/O
PM GC: VOR Capt
PM GC: VOR F/O

The value assigned to each control is either another control (any FS or FSUIPC-added control, including offset
controls and even macro controls—see later), or a Keypress. i.e:

Either: Cn,p (control number, parameter, optionally in hex with a preceding x)

Or: Kk,s (keycode and shifts).

Both of these are exactly as already defined for Button controls—see the earlier section on Button programming.

Macro Control References

Macro controls are represented internally in the same sort of way as FSUIPC offsets controls, by using high-value
bits in the control number. However, the representation in Macro files and in the INI file is as follows:

Mm:n

where m if the Macro File number (see below) and n is the control number from the file, as described above.

 39

Macro file numbers are assigned by FSUIPC when it loads the file. These are remembered in the INI file in a new
section [MacroFiles]. For example, in the above case you might get:

[MacroFiles]
1=PM GC

making “PM GC.mcro” file number 1 for all reference purposes.

It is important to note that different users will have a different selection of macro files in different orders. If they
wish to exchange Button assignments they will need to re-assign all macro controls after making their [MacroFiles]
sections the same, or at least the same for those files they have in common.

Multiple actions in one macro control
A macro control is not limited to having only one resulting action. If more than one action is required several lines
are used in the definition, as follows:

n=<name>
n.1=action1
n.2=action2
etc.

For an example consider a ‘Menu.mcro’ file containing these definitions:

[Macros]
1=Display
1.1=K79,16 ;O
1.2=K69,8 ;E
1.3=K68,8 ;D
2=FSUIPC
2.1=K77,16 ;Alt M
2.2=K70,8 ;F

This adds two controls, ‘Menu: Display’ and ‘Menu: FSUIPC’. The first uses ALT+O E D keystrokes to call up the
FS display settings dialogue, the second uses ALT+M F to call up the FSUIPC options.

Note that there’s a limit of 2000 numbered parameters in total in the macro file—so, for instance, 999 macro
numbers (1–999, the maximum) with an average of two actions each would be just two shy of the limit. Large files
aren’t good in any case as the drop-down list will be full of the added controls all beginning with the same filename.
Best to split into functional groups with meaningful filenames, to make the controls easier to locate.

Parameter passing
Normally, and certainly in all the above examples, any parameter set for a Macro Control, when assigned in the
Buttons or Keys dialogues, would be discarded as not relevant. However, there is a facility to allow it to be used.

If the parameter part of any of the controls defined in the macro is omitted, the parameter value from the calling
macro is substituted.

As a rather silly example, if you wanted a general PM GC control but not the one named already in FSUIPC, you
could define it as

7=by param=C2999

This would appear in the drop-downs as ‘PM GC:by param’, and the parameter assigned by the user would be used
in the C2999 operation. Note that in multiple-line definitions, the same parameter value substitutes for every omitted
parameter value.

One interesting consequence of this is the possibility of defining axis controls. To make another silly example, if I
define a macro like this:

8=Flaps=C66534 ;FS control 66534 is Axis Flaps Set

 40

and then assign it to an axis in the Axis assignments dropdown, the axis I've assigned will operate exactly as the Axis
Flaps Set axis.

This may not seem so futile when you realise that you can have multiple line mixtures of controls and keypresses
also produced by the same Macro. I'm sure there would be wealth of ideas for using this ‘feature’ (which actually fell
out of the implementation by accident rather than by design!).

Mouse macros
Another feature of Macro files is their ability to add controls to your armoury which operate switches, dials and other
features of FS panels and gauges (mostly add-on ones) which can otherwise only be operated by using the mouse.
Furthermore, this facility can actually be used even without recourse to manually preparing the macro files directly—
that part is semi-automated via Mouse Macro buttons in both the Buttons and Keys option tabs in FSUIPC. Details of
the automatic facilities are provided in the main User Guide. Here we just concentrate on the file itself, the format of
the mouse macro lines.

Note that a single Macro file can contain any mixture of mouse and other macros. In fact Mouse, Control and
Keypress actions can all be mixed and combined in a single Macro. Of course, this doesn’t happen for the
automatically generated macros.

This mouse facility adds the rather obscure format:
 R<module>:<rect#>,<mouseflag>

to those already described for Keys (K), Controls (C) and onward Macro references (M). The ‘R’ here is for mouse
Rectangle, because it is via specific rectangular areas on screen that FS recognises mouse requests. An ‘M’ for
Mouse would have been better, but that’s already used for Macro.

Now I’ll explain what the values in this specification actually mean, but in general no user will actually be concerned
with them, as they either have to be supplied be the gauge maker (the add-on panel supplier), or, more usually, be
generated automatically for you by FSUIPC, through use of the Mouse itself in mouse macro creation mode.

So, in the mouse action specification:

<module>: is optional. It is a reference to the Gauge or DLL filename, the part of the panel which will be asked to
process the Mouse action. It is a numerical reference to another line which must also be present somewhere in the
[Macros] section of the .MCRO file, one like this:

 ModuleN=”name of gauge or DLL”

where ‘N’ can run from 1 to 99, or be omitted (so giving “Module=”...”).

If the <module>: part of the mouse action is omitted, the Module being referenced is the one with no number.
Otherwise it is simply N:, referring directly to the module.

After the 'R' the <rect#> part is the only mandatory part. It is either a reference to the “MouseRect” number in the
tables in the Module—as "n” referring to the nth rectangle, counting from 0—or a direct reference to the Mouse
Function inside the module, as “Xxxxx*Xxxxx”, where the ‘xxxx’ parts refer to a hexadecimal offset and check-
word, respectively. The offset is from the Module’s load address in memory, and the check word are the 16 bits
around the mouse function’s entry point: 8 bits before and 8 bits after. The check-word is a safety measure, in case
the macro is used on a different version of the same Gauge or DLL.

Finally, the ,<mouseflag> part provides the actual mouse action required to operate the facility. This is encoded as a
number and must be one of the following:

31 MOUSE_RIGHTSINGLE
 30 MOUSE_MIDDLESINGLE
 29 MOUSE_LEFTSINGLE
 28 MOUSE_RIGHTDOUBLE
 27 MOUSE_MIDDLEDOUBLE
 26 MOUSE_LEFTDOUBLE
 21 MOUSE_DOWN_REPEAT

19 MOUSE_RIGHTRELEASE *
18 MOUSE_MIDDLERELEASE *
17 MOUSE_LEFTRELEASE *
 14 MOUSE_WHEEL_UP
 13 MOUSE_WHEEL_DOWN
11 MOUSE_LEAVE *

Of these, 29 is bar far the most common and is assumed when the parameter is omitted. Note that the values actually
equate to the mouse flags by those names in the FS Gauge C/C++ SDK.

 41

Those marked * cannot be generated automatically by FSUIPC as they refer to the mouse buttons being released.
However, they may be needed for some switch implementations, and you would need to add them yourself—
experimentation is key here. There are examples in the main User Guide.

Of these, 29 is bar far the most common and is assumed when the parameter is omitted. Note that the values actually
equate to the mouse flags by those names in the FS Gauge C/C++ SDK.

Just to put all this stuff into context, here are some actual examples. The first is from the FS9 PMDG737NG
overhead:

Module="PMDG_737NG_Overhead.gau"
1=Batt=RX3170*X8b90
Module1="PMDG_737NG_OHD_APU.GAU"
40=APU=R1:1

If these lines are in a loaded MCRO file called “737 OHD” then the Buttons and Keys controls drop-downs would
list “737 OHD:Batt”, which would operate the Battery switch, and “737 OHD: APU” which would operate the APU
switch. These would only do anything if the overhead gauge is loaded—i.e. the aircraft is in use. Note that the
Overhead gauge itself doesn’t have to be visible.

Here is an extract from the Macro file for the add-on gauge/DLL “APchart”:

Window="Airport Chart"
Module="APchart.gau"
1=Show/Hide=C66506,10000
...
7=Knob1 Down=R20,14
8=Knob1 Up=R20,13

This has a non-Mouse control included to show and hide the AP chart window. That uses the “PANEL ID SET”
control with the panel ID number 10000 as parameter (gleaned from the Panel.cfg file). It also has a couple of entries
shown which are operated by the mouse wheel.

But note that new parameter

Window="window title"

This needs to be present when it only makes sense to use the controls with the window both open and visible. This
applies to APchart where zooming and moving the chart would be daft without seeing it. You will find Window
names for panel parts in the Panel.CFG file. The automatic mouse macro generating facilities in FSUIPC never add a
Window parameter, so this may be the one good reason you ever edit a MCRO file.

Gauge local variable access (L:vars), by macro
Local named panel variables (“L:<name>”), which I’ll refer to as “Lvars”, can now be listed in the Log, written to
via Macros, and manipulated with both reads and writes through extensions to the ipc Lua Library

The log listing is obtained for the currently loaded aircraft panels by a new assignable control in the drop-down lists
called “List local panel variables”. This requests FSUIPC to list all Lvars found in the FSUIPC log file, by L:name
and current value.

Note that all FSUIPC can do is list what it finds. Whether the values are of any use or not is questionable—they are
internal to the gauge and how they are used, manipulated, and so on, will vary enormously. By all means try things if
you wish, but don’t assume the solution is there waiting for you. The use of these variables in FS9 is pretty much
restricted to a few add-on aircraft—in general the default aircraft don't use them. They came into their own with the
new XML type panels in FSX.

Macros to change Lvars
The macro facility to operate Lvars can only be used by editing macro files and building them manually. The format
is:
 N=L:name=ACTION

Where ACTION must be one of: Set, Inc, Dec, Cyclic or Toggle (but only the first 3 letters are needed):

Set copies the parameter in the Macro invocation to the identified Lvar. Alternatively, a value can be
given explicitly here, by “Set,n”. Values are limited to the normal parameter range, –32768 to
32767.

 42

Inc increments the value, and here the parameter (explicit or supplied) gives the upper limit, which can
be equalled but not exceeded.

Dec decrements the value, with the parameter setting the lower limit.

Cyclic is the same as Inc, but after the limit is reached the next value is 0.

Toggle changes the value to zero if it is non-zero, or 1 if it is zero.
The multi-line macro format can still be used with the Lvar macros, as follows:

 N=L:name
 N.1=action1
 N.2=action2
 ... etc.

However, unlike the usual multi-line macros, those using an L:Var cannot be mixed with any other parameter types or other
L:Vars. The single L:Var idenitfier is the actual macro name as well, so this prevents such complexity.

Lua access to Lvars
The Lua facilities are ipc.readLvar, ipc.writeLvar, ipc.getLvarName, and ipc.getLvarId. These are all described
in the updated Lua library documentation, and a sample Lua plug-in is provided demonstrating their use.

 43

Automatic running of Macros and Lua plugins
By some editing in the INI file, you can arrange for one or more Macros or Lua plugins to be executed, in order,
automatically whenever the current aircraft is changed (or, indeed, first loaded), or a specific named aircraft (or
Profile) is loaded.

This allows switches, offsets, and other things to be set specifically for an aircraft (or aircraft type, for Profiles) when
it is first loaded.

This is done by adding new sections to the INI file with the title{

 [Auto]

 or

 [Auto.xxxx...]

where the xxxx part is the aircraft name, or part-name (as in Aircraft Specific sections), or a profile name when
profiles are being used.

These Auto sections thus parallel the Keys and Buttons sections -- the naming and selection follows the same system.
The generic [Auto] section is carried out for all aircraft changes whilst the specific ones are only applied to matching
aircraft or profile..

Each Auto section contains a series of numbered lines (1=..., 2=... etc) each of which is either a Lua command, or a
Macro call. For example:

 [Auto.737]
 1=Lua SetMyOffsets
 2=737 OHD:Air Allbleeds

When Lua calls run a plug-in which doesn't self-terminate, the plug-in thread still running is killed automatically on
an aircraft/profile change.

 44

Axis Assignments
Axis assignments are saved in the [Axes] section, or [Axes.<aircraft name>] for aircraft specific assignments.
Generic aircraft assignments can be made using the same parameter and name shortening as for the Buttons and
Keyboard sections.

The polling interval can be changed by a parameter

PollInterval=10

inserted into the main [Axes] section. The units are milliseconds, 10 being the default.

The format of the axis parameters in these sections is as follows:

For the main axis entry (explanation of values below):

n=ja,(R)delta(/delay)

where the parentheses merely show optional parts, and

j = joystick # (0 to 18, 16 to 18 being PFC)
a = axis (XYZRUV)
R is only present when "Raw" mode is selected
delta is the delta value (eg 512, or 1 for Raw mode)
/delay is an optional delay*, in milliseconds

When axis controls are assigned (the left part of the options), this is extended by the definition of the controls:

n=ja,(R)delta(/delay),ForD,ctl1,ctl2,ctl3,ctl4

where
ForD is an F for "FS control" or D for "Direct to FSUIPC calibration"
ctl1 to ctl4 are the control numbers, or zero where unassigned. For Direct mode, these are the calibration
indices, 1–4 on Page 1 of calibrations, 5–8 on page 2, etc. Numbers 45–48 are the “dual” controls, equating
to others depending on whether FS is in flight mode or Slew mode.

* FSUIPC can apply delays to any axis assigned through its Axis Assignment facilities. The delay is limited to a minimum
of 2 x the axis polling interval (which defaults to 10 mSecs) and a maximum of 200 x this interval (i.e. 2 seconds with the
default polling interval).

Delays for axes have to be edited in the INI file. There is no facility to change them or even see them in the option screens.
Delays of 200 mSecs or more should be reasonably accurately maintained most of the time, but short ones could vary quite a
bit, the smaller you set them, because of the granularity of the polling interval and the sharing of the processor with other
things going on in FS.

Here's an example of an axis assigned to the FSUIPC Spoiler, with a 1 second delay:

0=0Y,256/1000,D,22,0,0,0

If the axis is programmed to send controls based on the axis passing through zones (the right side of the options),
there will also be entries for each such assignment, thus:

n=ja,UDorB(R),low,high,ctl,param

where UDorB is U for Up, D for Down or B for Both
R optionally specifies Repeat
low and high give the axis values for the zone
ctl and param are the Control numbers, and Parameter where used.

Here's an example for a Gear lever:

1=0Z,256/500
2=0Z,U,6400,16383,66079,0
3=0Z,D,-16384,-13783,66080,0

Note that the delay option (here half a second) still goes on the main axis entry, the one defining the delta (and
"Raw" mode if applicable).

You can edit the INI file whilst FS is running, then simply going to the Axis Assignment options page and clicking
the reload button at the bottom of the window.

 45

Additional parameters to scale input axis values
Axis values assigned in FSUIPC can be arithmetically adjusted before being passed onto FSUIPC calibration (or to
FS via FS controls). To do this you assign the axis as normal, then edit the FSUIPC.INI file. Find the axis assignment
there, in the relevant [Axes] section, and add one or both of these parameters to the end:

 ,*<number> to multiply the axis value by <number>. This can be a fraction, such as 0.5 (to divide by
2), and it can be negative, to reverse the axis direction. . Fractions can be expressed to 7
decimal places.

 ,+<number> or -<number>

 to add or subtract a number (an integer, no fractions) to or from the value.

If both parameters are given, the multiplication must come first, and is performed first. The resulting value is
constrained to be in the range -16384 to +16383.

As an example, if the normal input range of an axis is -16384 to + 16383 and you only want the positive half, but
need to still use the whole of the lever movement:

 ,*0.5,+8192

would be added to the assignment. The *0.5 changes the range to -8192 to +8191, and then adding 8192 gives 0 to
+16383.

After editing, just tell FSUIPC to reload the axis assignments (a button on the Axes page). You won't see the results
there, but you will in the calibrations.

Special scaling for axis operation via offsets 3BA8–3BC4 (the "PFC" axes)
Axis values written to the erstwhile "PFC axis" offsets, 3BA8-3BC4, are now automatically ranged if RAW mode is
not selected and the axis has not yet been assigned. This makes those offsets much more suitable to use by additional
hardware which is not recognised by Windows as a joystick type, or (especially) to using any sort of joystick axes
from a WideClient application or Lua plug-in.

The default range is still assumed as 0–127 (i.e. 7 bits), which suits the PFC axes, but this is expanded to anything
from 255 (8 bits) to 65535 (16 bits). You just need to make sure your program or device supplies the highest value so
the range is set correctly before making any assignment to the axis in FSUIPC. Note that the values are still assumed
to be always positive, so you may need to adjust them, by program or by using the multiplier/add parameters in the
INI after assignment.

The range is saved at the end of the relevant axis assignment line in the relevant FSUIPC [Axes] section as ",Rn"
where n = 1 for 8 bits, up to 9 for 16 bits. This will of course only apply to joysticks 16–18 as these are the joystick
numbers applied to these offsets. This parameter can also be added manually for already-assigned axes on joysticks
16–18.

 46

Programs: facilities to load and run additional programs
FSUIPC can, as an extra, cause other programs to be run each time you load and run Flight simulator. Details of
what programs to be run are provided in an additional section in the FSUIPC.INI file. This section cannot be edited
in the on-line FSUIPC options dialogues. You need to either edit the details directly in the INI file, or use the
excellent utility program “Run Options” provided separately by José Oliveira (you need the version of Run Options
dated November 2002 to use the new ‘CLOSE’ option).

The additional section is

 [Programs]

and can contain up to 16 requests to run other programs—up to 8 “Run” parameters Run1 to Run8, and up to 8
“RunIf” parameters, RunIf1 to RunIf8. Both sets are otherwise identical in format. The only difference is that the
RunIf programs are not run if they appear to be already running. The ordinary “Run” programs will be loaded
without such checking.

The format is simply:

 RunN=(Options,)<full pathname of program to be run>
or RunIfN=(Options,)<full pathname of program to be run>

where N runs from 1 to 8. Details of options are given below, but if none are required the parameter simplifies into
just the full pathname.

For example: Run1=D:\RadarContact\RCV3.exe

might be used to run Radar Contact version 3.

If the program needs command-line parameters these can be included by enclosing the whole value in quotes, so that
the space(s) needed don't cause problems. You may also need to include the quotes if the pathname includes spaces.

For example:

 Run2="c:\epic\loadepic fs98jet"

The programs are loaded in order of the run number, 1–8. If a mixture of Run and RunIf parameters are given, the
order is Run1, RunIf1, Run2, RunIf2, and so on.

The Options you can use are as follows:

HIDE tries to get the program to hide itself when it runs. This is only possible if the program
defines its window to use default settings, so it isn’t very useful for many programs,
unfortunately.

HIGH runs the program at higher priority than FS. Use with care! Messing about with priorities
doesn’t work well in all circumstances, and in particular FS2002 doesn’t seem to like it
much.

CLOSE closes the program tidily (if possible) when FS is terminated.

KILL forcibly terminates the program, if possible, when FS is terminated.

LOW runs the program at IDLE priority. Depending on what the program does, this may actually
effectively stop it until you direct user focus to it, as FS tends to soak up all Idle time.

READY delays loading and running the program until FS is up and ready to fly, and FSUIPC can
supply valid data through its IPC interface. (This parameter may, of course, result in the
programs being run in a different order to that specified by the Run number).

For example:

 Run1=CLOSE,C:\PM\PFD.EXE

Of these really only CLOSE, KILL and READY are of general use. If you want to apply more than one option, list
them separated by commas, but no spaces. For example:

 RunIf1=READY,KILL,D:\FS2002\WeatherSet.exe

 47

Assignment of FLAPS_SET control (for FS2002 only)
The Flaps calibration facility in FSUIPC cannot be used directly in FS2002, because the convenient FLAPS_SET
cannot be assigned to an Axis in FS2002.CFG. This omission was corrected in FS2004, and in the latter you can
even assign a Flaps Axis in FS’s Options–Controls–Assignments dialogue.

To get around the problem in FS2002, you can select any one of the following Axis controls (obviously one you are
not otherwise using!), assign it (by name) to your Axis in FS2002.CFG, tell FSUIPC to use this by declaring its
numeric value, as about to be explained, then calibrate it in FSUIPC’s Joystick section (as the FLAPS control, on
page 6).

The AXIS controls at your disposal are listed below. Use the chosen name in FS2002.CFG and the relevant number
in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

 FlapsSetControl=<control number>

This is set to 0 to disable the Flaps Set interception.

Valid Axis Controls (N.B. Not all tested. Please advise if you find any which don’t work in FS2002):

AXIS_AILERONS_SET 65763
AXIS_ELEV_TRIM_SET 65766
AXIS_ELEVATOR_SET 65762
AXIS_LEFT_BRAKE_SET 66387
AXIS_MIXTURE_SET 66292
AXIS_MIXTURE1_SET 66422
AXIS_MIXTURE2_SET 66425
AXIS_MIXTURE3_SET 66428
AXIS_MIXTURE4_SET 66431
AXIS_PAN_HEADING 66504
AXIS_PAN_PITCH 66503
AXIS_PAN_TILT 66505
AXIS_PROPELLER_SET 66291
AXIS_PROPELLER1_SET 66421
AXIS_PROPELLER2_SET 66424
AXIS_PROPELLER3_SET 66427

AXIS_PROPELLER4_SET 66430
AXIS_RIGHT_BRAKE_SET 66388
AXIS_RUDDER_SET 65764
AXIS_SLEW_AHEAD_SET 65867
AXIS_SLEW_ALT_SET 65870
AXIS_SLEW_BANK_SET 65871
AXIS_SLEW_HEADING_SET 65869
AXIS_SLEW_PITCH_SET 65872
AXIS_SLEW_SIDEWAYS_SET 65868
AXIS_SPOILER_SET 66382
AXIS_THROTTLE_SET 65765
AXIS_THROTTLE1_SET 66420
AXIS_THROTTLE2_SET 66423
AXIS_THROTTLE3_SET 66426
AXIS_THROTTLE4_SET 66429

Assignment of additional controls
 (Reverser, Aileron and Rudder Trims, and Cowl Flaps)
There are no axis controls provided in FS for jet thrust reversing nor for aileron or rudder trim or even for setting the
cowl flaps. To get around this, you can select any FS Axis control (one you are not otherwise using!), and assign it to
your Axis in FS’s assignments dialogue. Then you need to tell FSUIPC which one to use this by declaring its
numeric value, as about to be explained, and calibrating it in FSUIPC’s Joystick section (on page 7 or 8).

Most of the AXIS controls at your disposal are listed above with their numeric equivalent. Others can be found in my
FS Controls Lists which you can find on www.schiratti.com/dowson (separate ones for FS2000, FS2002 and
FS2004). Use the relevant number in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

 ReverserControl=<control number>
 AileronTrimControl=<control number>
 RudderTrimControl=<control number>
 CowlFlaps1Control=<control number>

CowlFlaps2Control=<control number>
CowlFlaps3Control=<control number>
CowlFlaps4Control=<control number>

These are set to 0 to disable the interception altogether, but FSUIPC assigns the AXIS_MIXTURE_SET control
(number 66292) to the Reverser by default. There is one other parameter for the reverser:

MaxThrottleForReverser=0

This controls the interlock—the reverser will not engage until all throttles are reduced to this setting (normally 0, or
idle). You can try a non-zero value here if you cannot calibrate your throttles to produce a stable idle zero.

http://www.schiratti.com/dowson

 48

Multiple Joysticks

Method 1:
On FS2000–2004, using the Joystick sections of the FSUIPC dialogue to calibrate the main flight controls, FSUIPC
can also accept up to four different control inputs for each main flight control, treating them equally. You can have
up to 4 aileron, elevator, rudder, throttle, left and right brake controls. FSUIPC takes the value from the input giving
maximum deflection from ‘neutral’ or ‘idle’. There’s no averaging, or other types of conflict resolution, taking place.

You have to somehow connect up your multiple joystick axes, whether by using an EPIC card, multiple Game Ports,
or multiple USB devices. FSUIPC cannot help there. Having done that, you need to find ‘spare’ FS controls which
you will not otherwise be using from joystick inputs (see the lists in my FS2000 Controls documents)—it doesn’t
matter if you will be using those controls from the keyboard. FSUIPC only pinches the joystick inputs. You have to
assign the additional joystick axes, wherever they may be, to these “spare” controls.

Now add to the FSUIPC.INI file’s JoystickCalibration section (add the section if necessary) a list of declarations
which define the additional controls you have assigned. You define these by number. The main flight controls are
defined by parameters like this:

 AileronB=<control number>

ElevatorB=<control number>
 RudderB=<control number>

Other parameters here can define LeftBrakeB, RightBrakeB, ThrottleB, and also C and D versions of all 6 controls,
so providing up to 4 copies of each one.

Note that you will need to calibrate all controls so that the ones controlling the same values are as close as possible in
range and response. Do this first in Windows Control Panel, then, after making the above adjustments and
assignments, in FSUIPC. Calibrate dead zones at the ends (and in the centre for aileron, elevator and rudder) to
“cover up” any discrepancies—in other words, calibrate for the worst of each.

Method 2:
An easier method is now available, provided you use the FSUIPC Axis Assignments facility to assign your controls,
deleting them from FS assignments.

FSUIPC’s axis assignments allows any of your joystick axes to be assigned to any of FS’s or FSUIPC’s axis
controls, and there’s no restrictions on how many you can assign to any of them. So that’s the first problem solved –
you can assign two sets of yokes, rudders, whatever, to the same controls.

Both FSUIPC and FS take notice of the last movement in an axis. They don’t “poll” them to get regular inputs, but
only see changes coming from them. So both will see the last change from multiple axes. However, that might be
from an unwanted jitter or small accidental movement. So, provided you assign your axes for Direct FSUIPC
Calibration (as opposed to an FS control), FSUIPC now arbitrates, selecting the axis with the highest deflection
(defined here as a difference from zero).

Note, however, that it still only sees axes when they change, so even if one axis is held at an large deflection, once
another axis for the same control moves to a similar or higher position, that takes control then even if it moves lower
than the held on—the latter is effectively “out of it” until it is moved.

The hints about calibration in Method 1 still apply.

 49

HELICOPTER PITCH and BANK TRIM facilities
A facility to operate pitch and bank trims on helicopters is provided. This uses the normal FS elevator and aileron
trim controls (and axes) to modify the end value on the “Y” (elevator) and “X” (aileron) axis of the cyclic. To use
this you need to ensure that the axes are calibrated through FSUIPC (as the elevator and aileron axes respectively),
and add

ApplyHeloTrim=Both

to the relevant [JoystickCalibration …] section(s) in FSUIPC.INI. Note that, as a precaution, the trim value will
never be added to the relevant axis if the normal trim value is non-zero.

This new “helo trim” values are maintained in IPC offsets as follows:

0BBE 2 bytes 16-bit Helo Pitch Trim value, range –16383 to +16383

0C06 2 bytes 16-bit Helo Bank Trim value, range –16383 to +16383

Both of these can be written to for external program control.

Note that if you only require a pitch trim you can set

ApplyHeloTrim=Yes

Instead of ‘both’. The aileron/bank axis and trim values will then be left alone.

Message Filters
Messages sent to FSUIPC for display on the FS screen can be filtered and forcibly routed according to their first few
characters. This is done by adding a new section to the FSUIPC.INI file, as follows:

 [MessageFilters]
 Suppress=...
 SingleLine=...
 MultiLine= ...

The “...” part is replaced by a list of up to 8 strings (in "quotes"), each of less than 16 characters. Messages sent to
FSUIPC are compared with these. If they start with the same characters (case ignored) then the action taken is as
follows:

 Suppress: the message is discarded
 SingleLine: the message is treated as a single line message even if it isn't
 Multiline: the message is treated as a multiline message even if it isn't.

For example:

SingleLine="FDC","PM MCP"

will route messages beginning "FDC" or "PM MCP" to the single line window, unless such messages are suppressed
by FSUIPC option.

 50

Facility for multiple INI installations (FS2000–FS2004)
Different FSUIPC.ini files can be used for differing FS requirements, even loading from the same FS2000/2002
installation. This involves using multiple FS2000.CFG, FS2002.CFG or FS9.CFG files with different filenames, with
the following section added in each one:

[FSUIPC]
ControlName=<name>

Then you load FS for each configuration with the command line parameter specifying the CFG file, thus, for FS2000
for example:

FS2000.exe /CFG:<filename>.CFG

And this will allow FSUIPC to identify its correct .INI file, <name>.ini.

IMPORTANT: For FS9 CFG files, please put your alternative CFG files into the main FS9 folder, not the
“Documents and Settings” place where the default FS9.CFG goes. If you put it where it seems logical, FS9 will not
see it and will create a new default CFG file with the name you specified, placing it in the default FS9 folder!

You FSUIPC.KEY file will need duplicating with your new name too, i.e. <name>.KEY. You can of course have
different Keys in each, though the name/address details will have to be the same as they are cross-checked. The Log
files will also use this <name>, not just FSUIPC.log etc.

The main use of this feature is so that a PC can be used in two or more modes with one FS installation, for example:

• As a WidevieW “slave” with the appropriate default Flight loaded by FS (to place it into slew mode with the
correct view) and the correct FSUIPC options set for allowing WidevieW to copy the weather correctly, and:

• With different FS cfg and FSUIPC ini files to run FS in normal ‘local control’ mode with all normal options.

 51

Appendix 1: About the Aircraft Specific option and “ShortAircraftNameOK”
Note: this is a contribution from a user, to whom thanks is expressed.

There are these three choices in FSUIPC settings:

ShortAircraftNameOK=No

ShortAircraftNameOK=Yes

ShortAircraftNameOK=Substring

Result: To get exactly the same settings for AXES, BUTTONS, KEYS and CALIBRATION for each plane
repaint or variant.

The Short Aircraft Name in FSUIPC refers to the name in the Aircraft.cfg file under “title”

For example: Aerosoft DHC Beaver. There might be 7 variants or repaints

aircraft.cfg \(flightsim.X)\title= Aerosoft Beaver DHC-2A 55-0682
aircraft.cfg \(flightsim.X)\title=DHC-2A C-GSKY Beaver
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A C-GSKY modern
aircraft.cfg \(flightsim.X)\title=Beaver DHC-2A DQ-GEE
aircraft.cfg \(flightsim.X)\title=DHC-2A DQ-GEE modern
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A N299EE
aircraft.cfg \(flightsim.X)\title=Beaver Aerosoft DHC-2A N299EE modern

Edit the FSUIPC.ini file:

Scenario 1: If “ShortAircraftNameOK=No”

Presuming that you have already assigned the axes, keys and buttons and calibrated the joystick for one
of the above variants or repaints: in order to get the same settings for the rest of the above
variants/repaints of the Aerosoft Beaver you would need to edit the FSUIPC.ini file and add 4 separate
entries for each title name (exactly as above) under [Axes], [Buttons], [Keys], [Joystick Calibration] to
ensure that all of the settings were exactly the same, ie 28 entries in all. Pretty tedious in fact— I had
over 40 variants/repaints of this plane so I would have need 160 entries in the FSUIPC.ini file.

[Axes. Aerosoft Beaver DHC-2A 55-068]
[Buttons. Aerosoft Beaver DHC-2A 55-068]
[Keys. Aerosoft Beaver DHC-2A 55-068]
[JoystickCalibration.Aerosoft Beaver DHC-2A 55-068]
[Axes. DHC-2A C-GSKY Beaver]
[Buttons. DHC-2A C-GSKY Beaver]
[Keys. DHC-2A C-GSKY Beaver]
[JoystickCalibration.DHC-2A C-GSKY Beaver]
[Axes. Aerosoft DHC-2A C-GSKY modern]
[Buttons. Aerosoft DHC-2A C-GSKY modern]
[Keys. Aerosoft DHC-2A C-GSKY modern]
[JoystickCalibration.Aerosoft DHC-2A C-GSKY modern]
[Axes. Beaver DHC-2A DQ-GEE]
[Buttons. Beaver DHC-2A DQ-GEE]
[Keys. Beaver DHC-2A DQ-GEE]
[JoystickCalibration.Beaver DHC-2A DQ-GEE]
[Axes. DHC-2A DQ-GEE modern]

 52

[Buttons. DHC-2A DQ-GEE modern]
[Keys. DHC-2A DQ-GEE modern]
[JoystickCalibration.DHC-2A DQ-GEE modern]
[Axes. Aerosoft DHC-2A N299EE]
[Buttons. Aerosoft DHC-2A N299EE]
[Keys. Aerosoft DHC-2A N299EE]
[JoystickCalibration. Aerosoft DHC-2A N299EE]]
[Axes. Beaver Aerosoft DHC-2A N299EE modern]
[Buttons. Beaver AerosoftDHC-2A N299EE modern]
[Keys. Beaver Aerosoft DHC-2A N299EE modern]
[JoystickCalibration.Beaver Aerosoft DHC-2A N299EE modern]

Scenario 2: If “ShortAircraftNameOK=YES”

12 entries would be required to make sure all settings were the same

[Axes. Aerosoft
[Buttons. Aerosoft
[Keys. Aerosoft
[JoystickCalibration.Aerosoft]

[Axes. DHC]
[Buttons. DHC]
[Keys.DHC]
[JoystickCalibration.DHC]

[Axes. Beaver]
[Buttons. Beaver]
[Keys.Beaver]
[JoystickCalibration.Beaver]

Explanation:

1. “Aerosoft” would pick all those entries in the title STARTING with “AEROSOFT”, but NOT
Aerosoft in any other part of the title.

2. “DHC” would pick all those entries in the title STARTING with “DHC” but not those with “DHC” in
any other part of the title

3. “Beaver” would pick all those entries in the title STARTING with “Beaver” but not those with
“Beaver” in any other part of the title

Scenario 3: If “ShortAircraftNameOK=Substring”

4 entries only, i.e. “DHC” in the FSUIPC.ini file would result in all variants having exactly the same settings
– “DHC” is common to all titles.

[Axes. DHC]
[Buttons. DHC]
[Keys. DHC]
[JoystickCalibration.DHC]

To summarise:

ShortAircraftNameOK=No One entry for each different title in the aircraft.cfg file
ShortAircraftNameOK=Yes Picks up the starting part of the title in the aircraft.cfg file
ShortAircraftNameOK=Substring Picks up any part of the title in the aircraft.cfg file

 53

Title in aircraft.cfg file ShortAircraftNameOK=
No Yes Substring

title=Airbus A321
title=Airbus A321 Paint2
title=Airbus A321 Paint4
title=Airbus A321 Paint5
title=Boeing 737-400
title=Boeing 737-400 Paint1
title=Boeing 737-400 Paint2
title=Boeing 737-400 Paint3
title=Boeing 737-400 Paint4
title=Boeing 747-400
title=Boeing 747-400 Paint1
title=Boeing 747-400 Paint2
title=Boeing 747-400 Paint3
title=Boeing 777-300
title=Boeing 777-300 Paint1
title=Boeing 777-300 Paint2
title=Boeing 777-300 Paint 3

Separate entry for
each title

“Airbus”: Would
apply to all entries
starting with Airbus.

“Boeing” would apply
to all entries starting
with Boeing.

“A321”: Any
variant with A321
in the title.

“Paint” Any
variant with PAINT
in the title.

“737”: Any variant
with 737 in the title.

Explanation: ShortAircraftNameOK=Substring Any text that is in any position in the “title” located in the
aircraft.cfg file that is inserted in the ini file as above will result in the same settings for those aircraft.
For instance choosing “737” ie [Axes.737] etc would result in all planes with 737 in the title having the
same settings. Likewise choosing “Boeing” would cover all variants/repaints with Boeing in the title

To summarise if you had 20 variants/models/repaints with all different titles you would need 20 entries
per section (80 in all) in the ini file. Using ShortAircraftNameOK=Substring you could cut this back to
just 1 entry per section (4 in total).

 54

Appendix 2: Handling VRInsight serial devices in FSUIPC

Introduction
First, please note that this section is all about FSUIPC's support for these serial port devices from VRInsight:

"MCP Combi", "M-Panel", "CDU 2", "CDU", "Micro Prop Pit", "Micro Jet Pit", "Radio
Stack", "Prop Pit", "Jet Pit", "Flight Monitor", "MFD", "GPS5", "MCP2 Boeing", "MCP2 Airbus"

These have become quite popular, being pretty good value for money. You can get a lot of functionality in a compact
package. However, they are not recognised by Windows as "Human Interface Devices" (HIDs) and certainly not as
"joysticks", and are therefore not normally seen in FSUIPC for Button or Switch programming.

In fact they are serial "COM" port devices, using USB connections with an FTDI chip based interface with a
serial/USB port driver. Their interface to FS is managed by VRInsight's own driver "SerialFP2" (or a later
replacement).

For many straightforward uses, SerialFP2 does a good job. However, it doesn't provide the flexibility for every
purpose and with more and more specialised aircraft and other add-ons for FS doing their "own thing", a way to
increase the functionality of the VRI devices was felt needed. This is especially the case where the devices have to
resort to sending many keypress combinations, which can get rather fraught when so many other programs are also
doing this.

The opportunity to make provisions in FSUIPC for the VRInsight range arose after the implementation of the serial
port handling Lua library, "com", because now FSUIPC already contained a multi-device multi-threaded mechanism
for easily reading from, and writing to, serial COM port devices.

Problems and Solutions
Compared to the GoFlight implementation in FSUIPC, which utilises a library module (GFDev.dll) provided by
GoFlight for this purpose, there are some complications. With GoFlight the devices can, to some extent, be shared
between the GoFlight driver assignments and FSUIPC assignments (though admittedly this can provide
complications with displays and indicators). The VRInsight situation is rather different. There is no easy way for a
user-level program like FS+FSUIPC to share the use of the same COM port with the VRInsight driver (SerialFP2). It
could probably be done using something like the Eterlogic VSPE program as a "splitter", but this is not a general
solution for users.

Therefore it first looked like it would have to be an either/or: you either use SerialFP2, or you use FSUIPC probably
with a Lua plug-in to program the displays. That would means the plug-in must do a lot of work, much of it probably
beyond the means of most users.

However, the Eterlogic VSPE ("Virtual Serial Port Emulator") does offer a good solution. It can provide any number
of virtual serial port "Pairs": that is two 'pretend' COM ports which are linked. For example, COM9 and COM10
might be a "Pair". Whatever a program writes to COM9 can be read by another program on COM10 and vice versa.
This is a facility I already promote the use of with my GPSout links via WideFS, for moving map applications.

The use of Virtual Serial Port pairs allows FSUIPC to sit between the VRInsight device and the VRInsight driver
(SerialFP2). Then FSUIPC can divert some or all buttons and switches to uses determined in the FSUIPC options,
and it can provide optional Lua plug-ins with opportunities to hook into both switch inputs from and display outputs
to the devices.

Okay. So, if you are still interested, let's move on to the instructions for achieving this:

Setting up the virtual serial ports
First, please download the Eterlogic VSPE program:

http://www.eterlogic.com/Products.VSPE.html

http://www.eterlogic.com/Products.VSPE.html

 55

If you are using a 32-bit Windows you will be able to use the free key which is included. 64-bit users will need to
purchase one ($25 U.S.).

After installing it and registering it (you have to cut and paste the long key!), proceed as follows:

1. From the Device menu, select Create.

2. In the Device Type drop-down, select Pair, then press Next and Finish.

3. Repeat steps 1 and 2 for the number of VRI devices you want to connect this way.

4. Note down the pairs made. For example:

COM5 ó COM6
COM7 ó COM8

5. In the File menu, select Save As, and save the configuration to some place with a file name you will know.
For example, in C:\ with a name like

ComPairs_56_78
to suit the configuration example I gave above.

6. Now close VSPE. By default the pairs will be destroyed. That’s fine.

7. Find the short-cut to VSPE which the installer placed on your desktop. Right-click it, select Properties, then
at the end of the stuff in “Target”, and after a space add:
 -minimize –hide_splash C:\ComPairs_56_78.vspe

where you put your own path and configuration filename in place of ‘C:\ComPairs_56_78’

8. Now you have a choice. You can have this program start when Windows starts—just drag the short-cut, or a
copy of it, into the Windows Startup folder. That’s what I would do. The existence of all those extra COM
ports does no harm when you are not using them, and you will be annoyed if you forget to start the program
before you want to run FS.

Note that you must not start it by simply using a Run parameter in FSUIPC4 INI’s [Programs] section.
This will be too late for FSUIPC to open one end of the link for SerialFP2 to connect.

Configuring FSUIPC to handle VRI devices
Now we must edit the FSUIPC INI file. Find it in the FS Modules folder—if you have Windows set to hide known
filetypes it will look like just ‘FSUIPC’ with a file type of “Configuration Settings”. Load it into a text editor such
as NotePad—do not use WordPad or a word processor!

Add a completely new section:

 [VRInsight]
 1=<device>, <driver>
 2=<device>, <driver>
Where those <device> and <driver> entries are serial port names. You need one line here for each VRI device. The
order doesn’t matter. The <device> entry gives the real serial port name for the device, and the <driver> entry gives
a virtual serial port name.

You can assign any virtual pair to any device, but just one pair to one device. Then, for each device, you enter one of
the pair’s port names as <driver> here. The other one of the pair will be used by SerialFP2—you shouldn’t need to
worry about that if SerialFP2 is set to ‘Auto’, as it will find it.

As an example, supposing I have one VRI device on COM3 and another on COM9. With my two pairs as set in the
example on the previous page I could have:

 1=COM3, COM6
 2=COM9, COM8

Then SerialFP2 would connect to the first via COM5 and the second via COM7. Here are the connections which
will be made:

 56

SerialFP2 ß à COM5 ß à COM6 ß à FSUIPC ß à COM3 ß à VRI Device1

SerialFP2 ß à COM7 ß à COM8 ß à FSUIPC ß à COM9 ß à VRI Device2

Note that, if you didn’t need SerialFP2 to drive your device, if it only had buttons and switches you were assigning in
FSUIPC, or you were driving it with a Lua plug-in instead of SerialFP2, then you need not have a ‘Pair’ for it and
you would omit the second port in the [VRInsight] parameters. I don’t think this is likely to apply very often.

Running SerialFP2
Whilst you are editing the FSUIPC INI file, you should consider how you will be running SerialFP2. It must not be
run before FSUIPC has grabbed the device’s real port, or it will get it and prevent FSUIPC’s access. Running it
manually after starting FS is awkward for obvious reasons.

The best way is to run it from FSUIPC. For that you need it adding to the INI file’s [Programs] section (add the
section too if you haven’t got one). For example, for two devices I would have this:

 [Programs]
Run1=READY,CLOSE,d:\VRInsight\SerialFP2\SerialFP2.exe
Run2=READY,CLOSE,d:\VRInsight\SerialFP2\SerialFP2.exe

For two devices you need two copies of SerialFP2 running, and so on. By putting ‘READY’ here I am stopping it
running before FSUIPC has got the port. CLOSE simply asks FSUIPC to close it when FS closes.

One final thing. Until you are sure you have things right, you might want to enable some special Logging in FSUIPC
which will show what is going on in the SerialFP2 -- FSUIPC -- VRI device chain. Add the following lines to the
[General] section of the INI file for a log of all of the inputs and outputs, from all parties:

 Debug=Please
LogExtras=4

If you already have a "LogExtras" line there, just change it. You can also set and change the number in FSUIPC's
Logging tab once the 'Debug=Please' line is there. [Note that the LogExtras number may be 'x4'—hexadecimal 4, the
same value, so don't worry about that].

Okay. Now you should be ready. Make sure your VRI devices are switched on, then run FS.

If all goes well your VRI devices should initialise and start working normally. The FSUIPC Log file will, soon after
the initialisation phase, show entries like this:

 VRI port 1 "COM5" opened
 VRI driver port 1 "COM2" also opened
For each pair listed in the [VRInsight] section of the FSUIPC.INI file, and then, as each device is seen by the
SerialFP2 driver (though probably getting mingled, as they are all multi-threading):

 VRI COM2 ---> CMDRST [from VRI Driver]
 VRI COM5 <--- CMDRST [to Device]
 VRI COM2 ---> CMDCON [from VRI Driver]
 VRI COM5 <--- CMDCON [to Device
 VRI COM5 ---> CMDCON [from Device]
 VRI COM2 <--- CMDCON [to VRI Driver]
 VRI COM5 ---> APLMAST+ [from Device]
 VRI COM2 <--- APLMAST+ [to VRI Driver]
 VRI COM2 ---> CMDFUN [from VRI Driver]
 VRI COM5 <--- CMDFUN [to Device]
 VRI COM5 ---> CMDFMER [from Device]
 VRI FMER ("MCP Combi") detected on port COM5
 VRI COM2 <--- CMDFMER [to VRI Driver]
Note that FSUIPC here recognized “FMER” as being the MCP Combi.

If the SerialFP2 driver does not find the device it may need helping. Try setting it on 'AUTO' and making it retry.
Once you have it working it sohuld be fine next time.

 57

Programming buttons, switches and knobs
Once you've reached this stage you should find you can detect and program most of the VRInsight knobs and
switches within FSUIPC's Buttons and Switches Tab. They'll have joystick numbers 256 and over. Some dials will
look like 4 buttons—fast and slow in each direction. But some don't have the fast mode.

FSUIPC's Buttons tab only reacts to buttons when they switch from "off" to "on". For VRInsight devices this
generally means two presses on buttons—unlike normal joystick buttons, holding them down does nothing useful.
There's no indication available of this. You press and release for one indication, then do the same again for the next.
Each time you do this it changes the button state from "off" to "on" and vice versa, alternately. If you want a button
to do something every time you press it you need to program both the press and the release. Similar considerations
usually apply to dials, which look "on" on one click and "off" on the next, and so on.

At present the radio buttons and knobs are not programmable in FSUIPC. They seem to operate quite well enough as
they are. They will be overridable in Lua plug-ins, for those among you who wish to get into more advanced
manipulation of the devices, but they aren't suitable for general re-allocation.

Once a button, knob or switch is programmed in FSUIPC it is hidden from SerialFP2 and, in fact, the log.

What else? What about the displays?
Good questions.

Everything that SerialFP2 can do with a device can also be done with a Lua plug-in using the facilities offered by the
new "com" library and, with the aid of some extra parameters which go into the FSUIPC.INI file, this can work with
SerialFP2 taking its part too if you'd rather not have to re-program everything yourself.

The Lua package provided with FSUIPC contains full details of both the Lua programming side and how the
FSUIPC INI file can be edited to make this all run seamlessly and automatically. Two relatively simple examples are
included and explained:

• one to allow the MCP Combi Speed display and adjustment to work correctly in Mach mode as well as IAS
mode, and

• one to swap the use of Inches for the altimeter BARO setting on the M-Panel for millibars (or hectoPascals
if you prefer).

If you own the MCP-Combi or M-Panel devices you might want to try one of those now. Instructions are included in
the Lua ZIP package.

Published by Peter L. Dowson, September 2013
Support forum: Pete Dowson's Support Forum

