

LuaFileSystem

File System Library for the Lua Programming Language

Introduction
LuaFileSystem is a Lua library developed to complement the set of functions related to file
systems offered by the standard Lua distribution.

LuaFileSystem offers a portable way to access the underlying directory structure and file
attributes.

LuaFileSystem is free software and uses the same license as Lua 5.1.

Reference
LuaFileSystem offers the following functions:

lfs.attributes (filepath [, aname])
Returns a table with the file attributes corresponding to filepath (or nil followed by an
error message in case of error). If the second optional argument is given, then only the
value of the named attribute is returned (this use is equivalent to
 lfs.attributes(filepath).aname,
but the table is not created and only one attribute is retrieved from the O.S.). The
attributes are described as follows; attribute mode is a string, all the others are numbers,
and the time related attributes use the same time reference of os.time:

dev
 This represents the drive number of the disk containing the file
ino
 On Windows systems this has no meaning
mode
 string representing the associated protection mode (the values could be file,

directory, link, socket, named pipe, char device, block device or other)
nlink
 number of hard links to the file
uid
 Always 0 on Windows
gid
 Always 0 on Windows
rdev
 On Windows systems represents the same as dev
access
 time of last access
modification
 time of last data modification
change
 time of last file status change
size
 file size, in bytes
blocks
 Not used on Windows
blksize
 Not used on Windows

This function uses stat internally thus if the given filepath is a symbolic link, it is
followed (if it points to another link the chain is followed recursively) and the
information is about the file it refers to. To obtain information about the link itself, see
function lfs.symlinkattributes.

lfs.chdir (path)
Changes the current working directory to the given path.
Returns true in case of success or nil plus an error string.

lfs.lock_dir(path, [seconds_stale])

Creates a lockfile (called lockfile.lfs) in path if it does not exist and returns the lock. If
the lock already exists checks it it's stale, using the second parameter (default for the
second parameter is INT_MAX, which in practice means the lock will never be stale. To
free the the lock call lock:free().

In case of any errors it returns nil and the error message. In particular, if the lock exists
and is not stale it returns the "File exists" message.

lfs.currentdir ()

Returns a string with the current working directory or nil plus an error string.

iter, dir_obj = lfs.dir (path)

Lua iterator over the entries of a given directory. Each time the iterator is called with
dir_obj it returns a directory entry's name as a string, or nil if there are no more entries.
You can also iterate by calling dir_obj:next(), and explicitly close the directory before
the iteration finished with dir_obj:close(). Raises an error if path is not a directory.

lfs.lock (filehandle, mode[, start[, length]])

Locks a file or a part of it. This function works on open files; the file handle should be
specified as the first argument. The string mode could be either r (for a read/shared lock)
or w (for a write/exclusive lock). The optional arguments start and length can be used
to specify a starting point and its length; both should be numbers.
Returns true if the operation was successful; in case of error, it returns nil plus an error
string.

lfs.mkdir (dirname)

Creates a new directory. The argument is the name of the new directory.
Returns true if the operation was successful; in case of error, it returns nil plus an error
string.

lfs.rmdir (dirname)

Removes an existing directory. The argument is the name of the directory.
Returns true if the operation was successful; in case of error, it returns nil plus an error
string.

lfs.setmode (file, mode)

Sets the writing mode for a file. The mode string can be either binary or text. Returns
the previous mode string for the file.

lfs.symlinkattributes (filepath [, aname])

This function is not available in Windows.

lfs.touch (filepath [, atime [, mtime]])
Set access and modification times of a file. This function is a bind to utime function. The
first argument is the filename, the second argument (atime) is the access time, and the
third argument (mtime) is the modification time. Both times are provided in seconds
(which should be generated with Lua standard function os.time). If the modification
time is omitted, the access time provided is used; if both times are omitted, the current
time is used.

Returns true if the operation was successful; in case of error, it returns nil plus an error
string.

lfs.unlock (filehandle[, start[, length]])

Unlocks a file or a part of it. This function works on open files; the file handle should be
specified as the first argument. The optional arguments start and length can be used to
specify a starting point and its length; both should be numbers.

Returns true if the operation was successful; in case of error, it returns nil plus an error
string.

License
LuaFileSystem is free software: it can be used for both academic and commercial purposes at absolutely no cost.
There are no royalties or GNU-like "copyleft" restrictions. LuaFileSystem qualifies as Open Source software. Its
licenses are compatible with GPL. LuaFileSystem is not in the public domain and the Kepler Project keep its
copyright. The legal details are below.

The spirit of the license is that you are free to use LuaFileSystem for any purpose at no cost without having to ask
us. The only requirement is that if you do use LuaFileSystem, then you should give us credit by including the
appropriate copyright notice somewhere in your product or its documentation.

The LuaFileSystem library is designed and implemented by Roberto Ierusalimschy, André Carregal and Tomás
Guisasola. The implementation is not derived from licensed software.

Copyright © 2003 Kepler Project.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

