
 1

FSUIPC: Lua Library Reference
(for FSUIPC5, version 5.15 and later, FSUIPC4, version 4.971b and later, FSUIPC3 version 3.999z9 and later,
and WideClient 6.999z4 and later – WideClient 7.148 needed for some facilities as noted)

This document lists the facilities added to the standard Lua library complement via ten libraries “ipc”, “logic”,
"com", “event”, "sound", "gfd", "mouse", "ext", "wnd" and "display" (the last two for WideClient only).

The ipc library adds all of the facilities needed to interact with FS and FSUIPC, whilst the logic library just adds bit-
oriented logical operations which are otherwise missing from Lua but needed when dealing with arrays of bits for
switches and options in FS. The event library provides ways of having dormant Lua plug-ins containing functions
activated by events in FS. Events which can be so detected include joystick buttons, keyboard combinations being
pressed/released, FS controls being used, and FSUIPC offsets changing values.

The IPC Library (also WideClient except where indicated)

Routine template Description
n = ipc.ask(“string”)
[Not WideClient]

n = ipc.ask(“string”, COLOUR)
[Not WideClient nor FSUIPC3]

This prompts the user via a message window on the FS screen,
displaying the “string” as a message. This can be single or
multiple-lined (use ‘\n’ for a new line).

The optional COLOUR parameter can be RED or WHITE.

The user answers with a string value, which is the result of the call.
It is then up to the Lua program as to how to interpret this.

The window and the reply operate just like the Window used to
prompt users for mouse macro names.

Note that with FSUIPC5 the window produced is a SimConnect
Message Window and so subject to the ipc.setdisplay function.

n = ipc.axis(joynum, "axis")

[Not WideClient]

Returns the current assigned axis value as read from the device (i.e.
before calibration). “joynum” is a joystick number, the same as
shown in FSUIPC’s Axis assignments tab. If you use joystick
lettering, you can put the letter here instead but it must be ""
quotes, as a string.

The specified axis must be one of these:

"X", "Y", "Z", "R", "U", "V" (as shown in the assignments tab)

ipc.btnPress(btn-number)
ipc.btnRelease(btn-number)
ipc.btnToggle(btn-number)

These provide direct control over the virtual buttons supported by
FSUIPC (those normally only controllable via offsets at 3340–
3363).

The button number is 0–287, and Press, Release, Toggle do as they
suggest.

Note that because Lua plug-ins are running in a separate thread (one
per plug-in), any running Lua plug-in which is operating the virtual
buttons can be detected doing so in FSUIPC’s “Buttons” tab, and
therefore such buttons can be programmed therein—provided the
plug-in IS actually looping and toggling a fixed button, of course.

n = ipc.buttons(joynum)
n = ipc.buttons("joyletter")

[Not WideClient]

Get button settings: “joynum” is a joystick number, the same as
shown in FSUIPC’s Button assignments tab. If you use joystick
lettering, you can put the letter here instead but it must be ""
quotes, as a string.

Provided the joystick is one being scanned by FSUIPC (i.e. it has a
button assignment), this function returns the 32-bit mask showing
which buttons are currently “on” (1) and “off” (0). Use the logic

 2

functions to test or isolate bits. Button 0 is the lowest bit (2^0) and
so on.

n = ipc.clearbitsUB(offset, mask)
n = ipc.clearbitsUW(offset, mask)
n = ipc.clearbitsUD(offset, mask)

Clears those bits in the Byte (UB), Word (UW) or DoubleWord
(UD) offset which correspond to those present in the Mask value.

This is equivalent to the following where XX is UB, UW or UD:
n = ipc.readXX(offset)
n = logic.And(n, mask)
ipc.writeXX(offset, n)

ipc.clearflag(flagnum)

[Not WideClient]

Clears the specified local Flag, 0-255. These flags are the same
ones that can be changed by the FSUIPC assigned controls
"LuaSet", "LuaClear" and "Lua Toggle".

Test flags using the ipc.testflag function.
ipc.control(n)
ipc.control(n, param)

Sends the FS or FSUIPC control ‘n’, with the optional parameter
(assumed 0 if omitted).

FS controls are listed in a List of ...” controls document provided
separately. FSUIPC added control numbers are listed in the
Advanced User’s guide.

ipc.display(“string”)
ipc.display(“string”, delay)
ipc.display(“string”, colour,
delay)

[WideClient okay, but display is
in FS, not on client PC]

Displays the given string value in FS, in a sizeable and undockable
window entitled “Lua display” (“SimConnect Message Window”
on P3D4). The maximum string which will be displayed is 1023
characters, including new lines (\n) codes.

If the delay parameter is provided (it is a number) it specifies how
long the display should stay for, in seconds. To remove a display
prematurely, send a null string (“”).

With 3 parameters given, the second specifies whether the message
should be in red (default, colour=0) or white (colour=1 or any non-
zero value). [This facility was added in FSUIPC 4.904, 3.999z3
and WideClient 6.996]

Note that with WideClient there is only one such window for all
Lua plug-ins. On P3D4 the Simconnect window is shared by all
SimConnect clients. In all cases the last one wins!

This of course also applies to direct FSUIPC use, unless the
ipc.setowndisplay function (see below) is used to name, position
and size an individual window for this plug-in [This is NOT
currently supported on P3D4]

See also ipc.lineDisplay and ipc.setowndisplay

n = ipc.elapsedtime() This returns the number of milliseconds since FSUIPC was started.
It is the same as the value shown in the Log files.

ipc.exit() This terminates the current Lua plug-in thread. For plug-ins using
the event library this is the only programmatic way of doing so, as
the registration of the event processing functions effectively keeps
the thread idling, waiting for those events, until the thread is forc-
ibly killed by the Kill control or by re-loading the same plug-in.

x = ipc.get(“name”) Retrieves a Lua value (any simple type -- i.e. numbers, strings,
booleans) previously stored as a Global by “ipc.set”. This
mechanism provides a way for a Lua plug-in to pass values on to
successive iterations of itself, or provide and retrieve values from
other Lua plug-ins.

 3

With effect from FSUIPC version 4.958, in combination with
WideClient version 6.999z2, the ‘Globalness’ of these values
extends between Clients and Server in a WideFS network, so can
be used to communicate values and strings over the network
without resorting to user offsets. This only works if Server and
Clients are in the same workgroup and can be turned off at the
FSUIPC end by setting the parameter “WideLuaGlobals=No” in its
INI file [General] section.

Use of this should be sparing – the Windows Mailslot system is
used and may not cope with excessive use very well. Also note that
there is no backlog – the globals are only broadcast when being set
(by ipc.set), so anything set before a client is actually running
won’t be seen by it. Also the Network protocol used is not checked
– messages are not guaranteed to arrive. Retries, maybe by a
system of Acknowledgement values, are up to the plug-in and
would be advisable in any “mission-critical” application of this
facility.

Note that there are limits on the sizes for network Globalness: the
variable names must not be greater than 32 characters, and string
values should be no longer than 384 characters. Values outside
these limits do not participate.

State, x, y, cx, cy =
ipc.getdisplay()

[Returns only zeroes in
WideClient]

This gets information about the current communal "Lua display"
Window (or “SimConnect Message Window” on P3D4), as used
by ipc.display by default. The values returned are:

State = 0 for no display, 1 for docked, -1 for undocked

x, y are the screen coordinates of the top left corner.

cx, cy are the width and height, respectively.
n = ipc.getLvarId(“name”)

[Not WideClient]

This gets the ID of the current FS local panel variable identified by
the name given. These variables are L: <name>. You can provide
the L: part explicitly or leave it out.

The value returned is numeric in the range 0 to 65535, or nil if the
variable is not available.

n = ipc.getLvarName(id)

[Not WideClient]

This gets the name of the current FS local panel variable identified
by the id value, a numeric in the range 0 to 65535. These variables
are L: <name> , but the result provided is only the ,name> part,
without the L:

 The value returned is a string, or nil if the variable is not available.

To get all current LVars you can iterate from 0 upwards until nil is
returned.

ipc.keypress(keycode)
ipc.keypress(keycode, shifts)

Sends the specified key press to FS (provided it has keyboard
focus). If the ‘shifts parameter is omitted a normal unshifted
keycode is sent and a press-and-release. The Advanced User’s
guide gives a list of keycodes and shifts.

ipc.keypressplus(keycode)
ipc.keypressplus(keycode, shifts)
ipc.keypressplus(keycode, shifts,
options)

[Not WideClient]

Same as the ipc.keypress function, above, except that the
keypresses are still sent whilst FS is inside a menu dialogue, and
the following additional options are provided, according to the
value of the "options" parameter:

0 or omitted = press-and-release, as for ipc.keypress
1 = press key, not press-and-release
2 = release key, not press-and-release

To which optionally one or both of these can be added:

 4

4 = change focus to FS before keystroke
8 = return focus to originally active window after keystroke (this
needs a previous or concurrent '4' option to get the active window
remembered).

ipc.lineDisplay(“string”)
ipc.lineDisplay(“string”, line)

[WideClient okay, but display is
in FS, not on client PC]

A variation on the ipc.display function, this also displays the given
string value in FS, in a sizeable and undockable window entitled
“Lua display”, but in this case the maximum string is 255
characters, and any new line codes will be stripped out.

This function provides line selection and scrolling effects,
controlled by the "line" parameter as follows:

line = 0 (Or omitted): Clears the display and puts this text
(if any) in the first line. Provide a null string ("") to
simply initialise the text buffers.

line > 0 Specifies the line number for this text, from 1 to 32
(max). Line 1 is the top line. Lines above this,
between it and the last line written, are cleared.

line < 0 Adds this text as another line in the list, following
the last one sent. The line parameter gives the
negative of the maximum line number to be used
(counting from 1, max 32), and if this line would
be placed there, the display is scrolled up one line
before it is added.

Note that with WideClient there is only one such window for all
Lua plug-ins. The last one wins! This also applies to direct
FSUIPC use, unless the ipc.setowndisplay function (see below) is
used to name, position and size an individual window for this
plug-in [Not on P3D4]

See also ipc.display and ipc.setowndisplay

ipc.log(“string”) Logs the string provided. The log entry goes to the FSUIPC log
gile unless either the Lua plug-in is being run in debug mode (Lua
Debug control), or Lua logging is enabled in the FSUIPC options.
In these two cases the log message goes to the Lua plug-in’s log
file instead.

ipc.macro("macroname")
ipc.macro("macroname", parameter)

Executes the named Macro, named in the same format as you see in
the FSUIPC assignment drop-downs. For example:

ipc.macro("PMDGquad: cutoff1")

executes the macro named "cutoff1" in the Macro file
"PMDGquad.mcro".

The optional parameter should be an integer between -32768 and
32767 (or 0 and 65535 for unsigned values).

Note that the facility can be used to execute other Lua plug-ins too,
for example:

ipc.macro("Lua display vals")

or, indeed, any of the Lua controls.

Note that when used in WideClient, the macro or Lua execution
occurs on the FS PC, not on the local client PC.

 5

n = ipc.readDBL(offset) Reads the double floating point (64-bit) value at the given IPC
offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readFLT(offset) Reads the single floating point (32-bit) value at the given IPC
offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readDD(offset) Reads the 64-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readLvar(“name”)

[Not WideClient]

This reads the current value of the FS local panel variable called
“name”. These are L: <name> values. You can provide the L: part
explicitly or leave it out.

The value returned is numeric, or nil if the variable is not available.

n = ipc.readPOV(joynum)

[Not WideClient]

Reads the POV value for a scanned joystick. “joynum” is the
joystick number, the same as shown in FSUIPC’s Button
assignments tab. Provided the joystick is one being scanned by
FSUIPC (i.e. it has a button assignment), this function returns the
state of the POV ("Point of View" hat) as a direction-indicating
pseudo button number (32–39), or 0 if it isn't pressed.

n = ipc.readSB(offset) Reads the 8-bit signed byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readSD(offset) Reads the 32-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readSTR(offset, length) Reads the string at the given IPC offset, with the length as
specified.

The string can contain any byte values, including zeroes. It is not
restricted to being ASCII. In this respect it can be considered as a
block of offsets, or a structure without named elements.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

x1, x2, x3 ... =
ipc.readStruct(offset, valuelist,
...)
for multiple groups:

x1, x2, x3 ... =
ipc.readStruct(offset1,
valuelist1, offset2, valuelist2,
...)

Reads multiple values from one or more groups of successive IPC
offsets, each starting with one given explicitly.

The offsets can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

The lists consist of one of more entries defining numbers and types
of values, as ‘nTYPE’. Types supported are:

UB unsigned 8-bit byte
UW unsigned 16-bit word
UD unsigned 32-bit dword
SB signed 8-bit byte
SW signed 16-bit word
SD signed 32-bit dword
DD signed 64-bit value
DBL 64-bit double floating point
FLT 32-bit single floating point

 6

STR string of ASCII characters (in this case the preceding number,
n, gives the length not a repeat count)

The values are assigned in order to the variables on the left-hand
side. For example:

A, B, C, S, V, W =
 ipc.readStruct(0x1234, “3SB”, “12STR”, “2DBL”)

Assigns 6 values (not 17), in order:
A = the signed byte at 0x1234
B = the signed byte at 0x1235
C = the signed byte at 0x1236
S = the <= 12 character string at 0x1237
V = the double float value at offset 0x1243
W = the double float value at offset 0x124B

n = ipc.readSW(offset) Reads the 16-bit signed word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readUB(offset) Reads the 8 bit unsigned byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readUD(offset) Reads the 32-bit unsigned integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

n = ipc.readUW(offset) Reads the 16-bit unsigned word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.RestoreFriction()
[Not WideClient]

[FSUIPC4 only]

Restores the SIM1.DLL friction tables to the state they were in
when FS was loaded.

Using this at the start of any Lua plug-in which sets the friction
specifically to suit a particular aircraft profile will ensure that
changes made previously are restored, stopping cumulative and
unintended changes to those values not explicitly set.

(See ipc.SetFriction, below.)

ipc.runlua("pathname") or
ipc.runlua("pathname", param)

Runs the specified Lua program in its own thread. Unlike the
ipc.macro method, when used on WideClient this will run the Lua
plugin locally.

ipc.set(“name”, value) Stores a Lua value (any simple type -- i.e. numbers, strings,
booleans) as a Global with the given name. This can be retrieved
by this or any other Lua plug-in by using “ipc.get”. This
mechanism provides a way for a Lua plug-in to pass values on to
successive iterations of itself, or provide and retrieve values from
other Lua plug-ins.

With effect from FSUIPC version 4.958, in combination with
WideClient version 6.999z2, the ‘Globalness’ of these values
extends between Clients and Server in a WideFS network, so can
be used to communicate values and strings over the network
without resorting to user offsets. This only works if Server and
Clients are in the same workgroup.

Use of this should be sparing – the Windows Mailslot system is
used and may not cope with excessive use very well. Also note that
there is no backlog – the globals are only broadcast when being set
(by ipc.set), so anything set before a client is actually running
won’t be seen by it. Also the Network protocol used is not checked

 7

– messages are not guaranteed to arrive. Retries, maybe by a
system of Acknowledgement values, are up to the plug-in and
would be advisable in any “mission-critical” application of this
facility.

Note that there are limits on the sizes for network Globalness: the
variable names must not be greater than 32 characters, and string
values should be no longer than 384 characters. Values outside
these limits do not participate.

n = ipc.setbitsUB(offset, mask)
n = ipc.setbitsUW(offset, mask)
n = ipc.setbitsUD(offset, mask)

Sets those bits in the Byte (UB), Word (UW) or DoubleWord (UD)
offset which correspond to those present in the Mask value.

This is equivalent to the following where XX is UB, UW or UD:
n = ipc.readXX(offset)
n = logic.Or(n, mask)
ipc.writeXX(offset, n)

ipc.setbtncol(btn, r, g, b)

[WideClient ONLY]

This WideClient-only function is used with the ButtonScreen
facility. It changes the button colour for the depicted button
corresponding to the number given as 'btn' (0-287). Button number
0 corresponds to "joystick 64, button 0" with 287 being "joystick
72 button 31".

This is not applicable to buttons denoted as "Toggle" buttons (T or
TN) in the ButtonScreen definition. See ipc.setbtnstate for those.

The colour to be set is specified by the values given for r (red), g
(green) and b (blue), each of which can range from 0 (none) to 255
(full).

ipc.setbtnstate(btn, state)
and

ipc.setbtnstateonly(btn, state)

[WideClient ONLY]

These WideClient-only functions are used with the ButtonScreen
facility. They change the button state (pressed or released) for the
button corresponding to the number given as 'btn' (0-287). Button
number 0 corresponds to "joystick 64, button 0" with 287 being
"joystick 72 button 31".

This is only applicable to buttons denoted as "Toggle" buttons (T
or TN) in the ButtonScreen definition.

A state value of 0 changes the state to "released" and also, in the
case of setbtnstate, sends a "button up" indication to FSUIPC if
the button was previously recorded as being pressed. Any non-zero
value sets the state to 'pressed' and also, in the case of setbtnstate,
sends a "button pressed" indication if it was recorded as released.

This facility is designed to be used to allow Toggle buttons to
correctly depict the current state of the option they control, even if
that state is changed by other actions, such another button screen,
keyboard, mouse or flight reloading.

Note that you should really only use this for true Toggle actions --
i.e. ones for which the programmed actions in FSUIPC are
different from Press and Release and have those actions occur
twice in succession does no harm. Where this isn't the case try
setbtnstateonly so that a single press does not result in a conflict
condition.

ipc.setdisplay(x, y, cx, cy)

[Dummy only in WideClient]

This changes attributes of the current communal "Lua display"
Window, if there is one displayed. This is the window used by
ipc.display function by default. The values set are::

x, y give the screen coordinates of the top left corner.

cx, cy give the width and height, respectively.

 8

Also, for P3D4, on FSUIPC5 only:

ipc.setdisplay(units, x, y, cx,
cy)

These are in screen coordinates (within the Flight Sim host
window), but unless the Windows is undocked (by the user), in
windowed mode the placement is limited by the size and position
of the FS window itself. With FSUIPC5, the top left position will
be adjusted if possible to fix the desired width and height into the
docking area.

It is best to read the current values first, using ipc.getdisplay,
modify them and write them back. This will also ensure the
Window exists.

Note that there is ever at most only one such "Lua display"
window. This command operates on that even if it was instigated
by another Lua plug-in. On P3D4 the display is actually the
“SimConnect Message Window” and that is shared with any other
SimConnect client program too.

Except on P3D4, the ipc.setowndisplay function (see below) can
instead be used to name, position and size an individual window
for this specific plug-in.

On P3D4 only, with the latest FSUIPC5, an initial parameter
“units” can be set to SET_PCTS to provide the coordinates and
sizes in terms of percentages of the dimensions of the host P3D4
screen. In this case each parameter must be in the range 0-100.
The adjustment of position and size to fit the docking area also
applies, as for when screen coordinates are used.

The default is for P3D4 screen coordinates, which is also selected
by SET_SCRN.
Note that an attempt to set percentage coordinates for an undocked
Window will be refused. There is actually a result of true or false
from this function which will indicate such a failure (as well as
percentage values out of range).

See also ipc.lineDisplay and ipc.display

ipc.setflag(flagnum)

[Not WideClient]

Sets the specified local Flag, 0-255. These flags are the same ones
that can be changed by the FSUIPC assigned controls "LuaSet",
"LuaClear" and "Lua Toggle".

Test flags using the ipc.testflag function.
x = ipc.SetFriction(class,
surface, type, condition, value)

[Not WideClient]

[FSUIPC4 only]

This is a rather specialist function which specifically changes the
rolling, sliding and braking coefficients within FSX's SIM1.DLL. It
operates on-the-fly at run time so different plug-ins can be used to
tailor these for different aircraft models. It operates with all
versions of FSX plus Prepar3D version 1.4.

Class = one of:

BRAKE, WHEEL, SCRAPE, SKID, FLOAT, WRUDDER, SKI

(where WRUDDER is short for Water Rudder).

Surface = one of:

CONCRETE, GRASS, WATER, GRASS_BUMPY, ASPHALT,
SHORT_GRASS, LONG_GRASS, HARD_TURF, DIRT, CORAL,
GRAVEL, OIL_TREATED, STEEL_MATS, SNOW, ICE, URBAN,
FOREST, BITUMINUS, BRICK, MACADAM, PLANKS, SAND,
SHALE, TARMAC, WRIGHT_FLYER_TRACK

Type = one of:

ROLLING, SLIDING (but only ROLLING for the BRAKE class)

 9

Condition = one of:

DRY, RAIN, ICE, SNOW

Value should be a number between 0 and 1 inclusive, but this is
not checked.

The Boolean result x is True if this was done, False if there's
something wrong.

See also ipc.RestoreFriction, above.

ipc.setowndisplay("title", x, y,
cx, cy)

[Not WideClient]

In FSUIPC5 this is the same as
ipc.setdisplay(SET_PCTS, x, y,
cx, cy)

Except on P3D4 this sets all further calls to ipc.display or
ipc.linedisplay to operate on a private Window, owned by this Lua
plug-in, with the title given. Note that the title is NOT optional.

The x, y values give the top left corner position within the FS
window in terms of a percentage of the window width and height
respectively, so that 50, 50 is dead centre. Similarly the cx, cy
values give the size in the same way, so that 25,25,50,50 would
give a centred window with half the size (in both directions) of the
FS window (or screen in full screen mode).

The function can be used again to move, resize and/or re-title the
window -- the previous one is automatically closed but its contents
are retained.

Note that except on P3D4 the ipc.getdisplay and ipc.setdisplay
functions do not operate on this Window -- those functions are
purely for the communal Window "Lua Display". Additionally,
whilst it can be moved, resized and undocked by the user, any such
changes are not currently readable and no record is made of them
in any configuration file.

NOTE:.in P3D4 the "title" parameter is ignored and the
function acts identically to
 ipc.setdisplay(SET_PCTS, x, y, cx, cy)
See also ipc.lineDisplay and ipc.display

ipc.sleep(msecs) Suspends execution of the plug-in for the given number of
milliseconds, allowing other threads to operate with less hindrance.

Note that if the ipcPARAM value has been set by an external
LuaValue control, the new value becomes available only after an
ipc.sleep function call or an event is actioned.

x = ipc.testbutton(joynum, btn)

[Not WideClient]

Tests a scanned button. “joynum” is a joystick number, the same as
shown in FSUIPC’s Button assignments tab. Provided the joystick
is one being scanned by FSUIPC (i.e. it has a button assignment),
this function returns the state of the specified button number (0–31)
as TRUE or FALSE.

You can test for the POV position too using button numbers 32-39,
but you might want instead to read the POV state using
ipc.readPOV.

bool = ipc.testbuttonflag(joynum,
btn)
[Not WideClient]

Tests a button flag. Just like testbutton above except testing the
state of the flag associated with the button instead.

POVs do not have flags, so the btn number range is 0-31.

The result is true or false.
bool = ipc.testflag(flagnum)

[Not WideClient]

Tests one of the 256 flags (numbered 0–255) specifically available
for this plug-in and controlled by the added FSUIPC controls
(LuaFlag Set, Clear and Toggle). These are provided so that the

 10

user can communicate with the plug-ins via assigned buttons or
keypresses.

The result is true or false.
n = ipc.togglebitsUB(offset, mask)
n = ipc.togglebitsUW(offset, mask)
n = ipc.togglebitsUD(offset, mask)

Inverts those bits in the Byte (UB), Word (UW) or DoubleWord
(UD) offset which correspond to those present in the Mask value.

This is equivalent to the following where XX is UB, UW or UD:
n = ipc.readXX(offset)
n = logic.Xor(n, mask)
ipc.writeXX(offset, n)

ipc.toggleflag(flagnum)

[Not WideClient]

Toggles (i.e. inverts) the specified local Flag, 0-255. These flags
are the same ones that can be changed by the FSUIPC assigned
controls "LuaSet", "LuaClear" and "Lua Toggle".

Test flags using the ipc.testflag function.
ipc.writeDBL(offset, value) Writes the value provided as a double floating point (64-bit) value

at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeFLT(offset, value) Writes the value provided as a single floating point (32-bit) value
at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeDD(offset, value) Writes the value provided as a 64-bit signed integer value at the
given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeLvar(“name”, n)

[Not WideClient]

This writes to the FS local panel variable called “name”. These are
L: <name> values. You can provide the L: part explicitly or leave it
out.

If the variable is not currently available, nothing happens.
ipc.writeSB(offset, value) Writes the value provided as an 8-bit signed byte value at the given

IPC offset. The offset can be specified in Lua format hexadecimal,
e.g. 0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeSD(offset, value) Writes the value provided as a 32-bit signed integer value at the
given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeSTR(offset, “string”)
ipc.writeSTR(offset, “string”,
length)

Writes the string at the given IPC offset, either with the same
length or extended or truncated to the length optionally specified.
The string will have a zero terminator added, so allow for this if
you don't specify a length. If it is extended it is with zeroes.

The string can contain any byte values, including zeroes. It is not
restricted to being ASCII. In this respect it can be considered as a
block of offsets, or a structure without named elements.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

 11

ipc.writeStruct(offset,
valuelist, ...)
for multiple groups:

ipc.writeStruct(offset1,
valuelist1, offset2, valuelist2,
...)

Writes multiple values from one or more groups of successive IPC
offsets, each starting with the one given explicitly.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

The list consists of one of more entries defining numbers and types
of values, as ‘nTYPE’. Types supported are:

UB unsigned 8-bit byte
UW unsigned 16-bit word
UD unsigned 32-bit dword
SB signed 8-bit byte
SW signed 16-bit word
SD signed 32-bit dword
DD signed 64-bit value
DBL 64-bit double floating point
FLT 32-bit single floating point
STR string of ASCII characters (in this case the preceding number,

n, gives the length not a repeat count)

The values to be written must follow, in the parameter list, the
Type specifier. For example:

ipc.writeStruct(0x1234, “3SB”, 55, 66, 77,
 “12STR”, “a string”, “2DBL”, 1.234, 3.456)

Writes 6 values (not 17), in order:

55 to the signed byte at 0x1234
66 to the signed byte at 0x1235
77 to the signed byte at 0x1236
“a string” with zero padding to the bytes at 0x1237
1.234 to the double float value at offset 0x1243
3.456 to the double float value at offset 0x124B

One particularly useful application of this facility is to set FS's date and
time in one operation so that it's reload of textures etc only occurs once.
Here, this example sets the PC's current UTC date and time. It makes use
of the built-in os library function os.date:

 t = os.date("!*t")
 ipc.writeStruct(0x023B, "1UB", t.hour,
 "3UW", t.min, t.yday, t.year)

ipc.writeSW(offset, value) Writes the value provided as a 16-bit signed word value at the
given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeUB(offset, value) Writes the value provided as an 8 bit unsigned byte value at the
given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeUD(offset, value) Writes the value provided as a 32-bit unsigned integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

ipc.writeUW(offset, value) Writes the value provided as a 16-bit unsigned word value at the
given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

 12

The Logic Library (also WideClient)

Note that the names of all the functions provided in the logic library begin with a capitalised letter. This is important.
It prevents Lua interpreter errors arising from the use of the reserved words “and”, “or” and “not”.

Note that all of these functions handle 32-bit unsigned values, no matter how the parameters are provided.

Routine template Description
X = logic.And(y, z) X = y & z

For example, in binary, 0011 & 1010 = 0010
X = logic.Nand(y, z) X = (~y) | (~z)., same as ~(y & z)

For example, in binary, 0011 nand 1010 = 1101
X = logic.Nor(y, z) X = (~y) & (~z)., same as ~(y | z)

For example, in binary, 0011 nor 1010 = 0100
X = logic.Not(y) X = ~y

For example, in binary, ~ 0011 = 1100
X = logic.Or(y, z) X = y | z

For example, in binary, 0011 | 1010 = 1011
X = logic.Shl(y, n) X = y << n

For example, in binary, 0011 << 1 = 0110
X = logic.Shr(Y, N) X = y >> n

For example, in binary, 1100 >> 1 = 0110
X = logic.Xor(Y, Z) X = y xor z.

For example, in binary, 0011 xor 1010 = 1001

 13

The Mouse Library (not WideClient)

This library provides some functions for manipulating the mouse, in order to access parts of add-on panels that no
other methods appear to reach!

In FSUIPC4/5 (only) It can also be used to do all sorts of fancy things in conjunction with the extensive mouse
events detectable using the event library. In particular, see the example plug-in supplied called "mrudder.lua".

The mouse position is measured in any one of three ways:

x, y Windows screen coordinates, or 'absolute' position, relative to the top left of the top left-most screen.

xr, yr FS's window coordinates, relative to the top left position of its main window (not including title bar, menu

(if present) or borders (if present). If required, this pair can also be pointing to a position outside of the FS
window

xp, yp A position inside the FS window denoted by the percentage of its width across (xp, left to right) and down

(yp, top to bottom). This can only ever be in the FS window, values 0-100. The getpos function may return
other values when the mouse pointer is outside the window, but these cannot be used within the positioning
functions.

The percentage positions are useful in situations where you might resize the FS window, but the positions of
elements you wish to control stay correctly positions proportionally. The other methods would generally be better if
you use full screen all the time.

Routine template Description
x, y, xr, yr, xp, yp =
mouse.getpos()

Returns the current mouse pointer position in all three ways
described above. This function is provided merely so that you
can determine what values you need for your own positioning
using the mousemove function.

mouse.move(x, y)
or

mouse.move(x, y, method)

Moves the mouse pointer to the position indicated. If method
is omitted or given as 0, the (x, y) value is assumed to be
Windows screen coordinates.

method = 1 indicates FS window relative coordinates.

method = 2 indicates FS windows percentage position.

mouse.click(button)
or

mouse.click(button, action)

Presses ("clicks") a mouse button.

button = 0 left, 1 middle, 2 right

If action is omitted or given as 0, a single click, ie. a press
and release, is performed. Otherwise:

action = 1 means hold the button down

action = 2 means release the button

If you need a double-click, use two subsequent action 0 calls,
with a small delay (ipc.sleep) between.

mouse.wheel(n) Turns the mouse wheel forward (+n) or back (–n) the
specified number of 'clicks'.

mouse.hwheel(n) If so equipped and supported by your version of Windows,
pushs (or turns?) and holds the wheel in the horizontal mode,
left (–n) or right (+n) the specified number of 'clicks'.

 14

The EXT Library (also WideClient)

Routine template Description
ext.close(handle)
ext.close(handle, time)

Closes (terminates) a program started using the ext.run or
ext.runif functions.

If 'time' is provided (a number of milliseconds) then if the
program has not terminated tidily in that time after being sent
the polite 'CLOSE' message, it is ruthlessly terminated -- in
the same manner as used in Task Manager.

ext.focus(handle)
ext.focus(0) or ext.focus()

This does its level best to make the identified program the
current foreground program, receiving keystrokes and mouse
clicks. The program must be one started by ext.run or
ext.runif.

Using the function without a parameter, or 0, forces focus
back to FS or WideClient.

bool = ext.isrunning(handle)
bool = ext.isrunning("name")

Returns TRUE or FALSE depending on whether the
identified program is running or not. You can identify the
program by the handle returned by ext.run or ext.runif, or
ext.gethandle, or by its name. The name can be a full
pathname, but only the "name.exe" part is used.

The result is true or false.

ext.kill(handle) Forcibly terminates a program started using the ext.run or

ext.runif functions.
ext.move(handle, x, y, screen)
ext.move("name", x, y, screen)

where 'screen' can be omitted for
default or only screen.

Moves the top level Window of the named program. The
position can be on any attached screen (identified by 'screen',
with 0=default, and 1, 2, 3 ... being the numbers shown by
Windows monitor settings when using 'identify').

If the 'screen' parameter is omitted, the default screen is
assumed.

The x and y coordinates are for the top left corner and are in
terms of a percentage of screen width and height respectively,
and so are independent of actual screen size or resolution. For
example 50, 50 would be dead centre.

The program can be identified in one of three ways:

* Handle: from an ext.run or ext.runif call.
* Name of the process (i.e. "program.exe")
* Title of the top-level Window. ("my window")

ext.position(handle, x, y, cx,
cy, screen)
ext.position("name", x, y, cx,
cy, screen)

where 'screen' can be omitted for
default or only screen.

Moves and sizes the top level Window of the named program.
The position can be on any attached screen (identified by
'screen', with 0=default, and 1, 2, 3 ... being the numbers
shown by Windows monitor settings when using 'identify').

If the 'screen' parameter is omitted, the default screen is
assumed.

The x and y coordinates are for the top left corner, and the cx,
cy specify the width and height, and all four are in terms of a
percentage of screen width and height respectively, and so are

 15

independent of actual screen size or resolution. For example
25,25,50,50 would position the window at half the screen's
size in both dimensions and in the dead centre.

The program can be identified in one of three ways:
* Handle: from ext.run, ext.runif or ext.gethandle.
* Name of the process (i.e. "program.exe")
* Title of the top-level Window. ("my window")

handle = ext.gethandle("name") This attempts to get an ext library type handle for the
specified process or Window title. Check the handle returned.
If it is 0 then the attempt failed.

The process can be specified as a program name (complete
with the .exe or whatever, but without any path detailed), or a
Window title. There may of course be no such process
running, or there may be more than one. In the latter case a
handle to the first one listed by Windows will be attached.

The handle can be used in any of the ext library functions
which can use a handle, but theyt won't necessarily work.
Since we don't actually "own" said process, there are limits to
what can be done. You'd need to experiment a little.

bool = ext.hasfocus()

bool = ext.hasfocus(handle)

bool = ext.hasfocus("progname")

Note: FSUIPC4/5 only

This tests whether a specific program currently has the focus
(or, more accurately, is the owner of the current foreground
window).

If no parameter is provided, it is a test for the flight sim
having focus. Otherwise you can provide a handle from the
ext.run or ext.gethandle functions, or you can provide the
executable name for the program being tested.

handle, error =
ext.run("pathname")
handle, error =
ext.run("pathname", "command line
parameters")

Both can have up to four extra
parameters giving options -- see
opposite.

Runs the program specified by a full pathname, including the
EXE or COM filetype (or whatever). If it needs command line
parameters provide these as a separate string, as the second
parameter.

Check the handle returned. If it is 0 then the attempt failed
and 'error' will contain the error number returned by
Windows, or, if negative, one of these:

–2 = memory problem assigning control block
–3 = bad string supplied, cannot use

You can add up to four more parameters, selecting options
from the following:

EXT_HIDE to start the program hidden
EXT_MIN to start the program minimised
EXT_NRML to start it normally (defaulted anyway)
EXT_MAX to start the program maximised
EXT_LOW run at Low priority (using only idle time)
EXT_HIGH run at High priority
EXT_CLOSE close this automatically when FS (or

WideClient) closes
EXT_KILL terminate this forcibly when FS (or

WideClient) closes

 16

EXT_FOCUS Transfer focus to the resulting top window,
if possible. (If this is omitted, focus will be
returned to the previous owner, probably
FS, even though the program will grab it
initially unless hidden).

Note that not all programs are susceptible to all of these. In
particular many define their own initialisation state (hidden,
normal or whatever). Some of those may be susceptible to a
subsequent ext.state change, however.

Handles returned by ext.run and ext.runif are not local to
the current Lua, but global for this FSUIPC or WideClient
session, so can be saved in Lua global variables (see ipc.get
and ipc.set) and that way passed among Lua plug-ins.

handle, error =
ext.shell("pathname")
handle, error =
ext.shell("pathname", "command
line parameters")

Both can have up to four extra
parameters giving options -- see
opposite.

Uses the Windows Shell to execute or otherwise process the
program or file specified by a full pathname. If this needs
command line parameters provide these as a separate string,
as the second parameter.

The normal action carried out will be 'open', bt others can be
specified using the EXT_ keywords in the extra parameters,
as described below. Of course not all options will be
applicable to all file types.

Check the handle returned. If it is 0 then the attempt failed
and 'error' will contain the error number returned by
Windows, or, if negative, one of these:

–2 = memory problem assigning control block

–3 = bad string supplied, cannot use

The handle may or may not be associated with a Window,
according to the filetype and action requested, so some of the
functions defined for handles will not always work.

You can add up to four more parameters, selecting options
from the following:

EXT_HIDE to start the program hidden
EXT_MIN to start the program minimised
EXT_NRML to start it normally (defaulted anyway)
EXT_MAX to start the program maximised
EXT_LOW run at Low priority (using only idle time)
EXT_HIGH run at High priority
EXT_CLOSE close this automatically when FS (or

WideClient) closes
EXT_KILL terminate this forcibly when FS (or

WideClient) closes
EXT_FOCUS Transfer focus to the resulting top window,

if possible. (If this is omitted, focus will be
returned to the previous owner, probably
FS, even though the program will grab it
initially unless hidden).

The action to be carried out can be specified as one of these:
EXT_OPEN To open the file (like double-clicking it).

This is the default action.

 17

EXT_EDIT Attempt to open an appropriate editor with
this file loaded.

EXT_EXPLORE Open the folder in Explorer
EXT_PRINT Attempt to print the file
EXT_FIND Attempt to open Explorer to find a file
EXT_PROPS Attempt to display the file's properties.

Note that not all files are susceptible to all of these.

Handles returned by ext.shell are not local to the current Lua,
but global for this FSUIPC or WideClient session, so can be
saved in Lua global variables (see ipc.get and ipc.set) and
that way passed among Lua plug-ins.

handle, error = ext.runif(...)

See ext.run for details

This is identical to ext.run, above, except that the program is
not run if it is already running. In other words it's equivalent
to performing an ext.isrunning before an ext.run and
bypassing the latter on a TRUE result.

If the program is not run because it is already running, the
handle is 0 and the error number is –1.

ext.size(handle, cx, cy, screen)
ext.size("name", cx, cy, screen)

where 'screen' can be omitted for
default or only screen.

Sizes the top level Window of the named program. The
position can be on any attached screen (identified by 'screen',
with 0=default, and 1, 2, 3 ... being the numbers shown by
Windows monitor settings when using 'identify').

If the 'screen' parameter is omitted, the default screen is
assumed.

The cx, cy specify the width and height in terms of a
percentage of screen width and height respectively, and so are
independent of actual screen size or resolution. For example
50,50 would make the window half the screen's size in both
dimensions.

The program can be identified in one of three ways:

* Handle: from ext.run, ext.runif, or ext.gethandle.
* Name of the process (i.e. "program.exe")
* Title of the top-level Window. ("my window")

ext.state(handle, state)
ext.state("name", state)

Changes the current state of the top level window of the
program identified by 'handle', started previously by an
ext.run or ext.runif call. The 'state' can be one of:

EXT_HIDE, EXT_MIN, EXT_NRML or EXT_MAX

The program can be identified in one of three ways:

* Handle: from ext.run, ext.runif, or ext.gethandle.
* Name of the process (i.e. "program.exe")

* Title of the top-level Window. ("my window")

Note that not all programs are susceptible to these commands.

bool = ext.sendkeys(handle, ...)

This sends keypresses to the window associated with the ext
handle. To do this is has to transfer focus to that Window, so
expect it to popup. Focus will be returned to the previous
owner afterwards (e.g. FS).

 18

where for ... you can have any
number of pairs of parameters
denoting either:

 virtual keycode,
 shift code

or "string",
 shift code

Note that not all handles will be associated with a Window --
in particular those returned by ext.gethandle and ext.shell
will often not be. In this case the result returned will be false.
Otherwise it will be true, and the keystrokes wil be sent: but if
the focus is not on a Window which can accept them, do not
expect to see them!

The pairs of parameters can be mixed between keycode+shifts
and string+shifts as you need. The virtual keycodes are listed
on the next page, as are the shift codes.

The second of the pair for the last set can be omitted if no
shifts are required, as 0 is then assumed. However, if there is
more than one pair the intermediate shifts must be given, even
if 0.

bool = ext.postkeys(handle, ...)

This posts keypresses to the window associated with the ext
handle. Posting keyboard messages in this way does not
require any change of focus, so may be more attractive on the
FS PC. However, this method does not work with many
programs. Best to try it first.

Apart from posting instead of sending, this function is the
same as ext.sendkeys, so please refer to the extra information
for that.

bool = ext.postmessage(handle,
Message, wParam, lParam)

This is for the programmers among you. It sends the specified
Windows message (which you'll need to look up the number
for) with the parameters given.

 19

KeyCodes and Shifts

 0 Null (+ Alt, Shift etc alone)
 8 Backspace
 9 Tab
 12 NumPad 5 (NumLock Off)
 13 Enter
 16 Shift
 17 Control
 18 Alt

19 Pause
20 CapsLock
27 Escape

 32 Space bar
 33 Page Up
 34 Page Down
 35 End
 36 Home
 37 Left arrow
 38 Up arrow
 39 Right arrow

40 Down arrow
44 PrintScreen

 45 Insert
 46 Delete
 48 0 on main keyboard
 49 1 on main keyboard
 50 2 on main keyboard
 51 3 on main keyboard
 52 4 on main keyboard
 53 5 on main keyboard
 54 6 on main keyboard
 55 7 on main keyboard
 56 8 on main keyboard
 57 9 on main keyboard
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F

 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 91 Left Windows
 92 Right Windows
 93 Apps Menu
 96 NumPad 0 (NumLock ON)
 97 NumPad 1 (NumLock ON)
 98 NumPad 2 (NumLock ON)
 99 NumPad 3 (NumLock ON)
 100 NumPad 4 (NumLock ON)
 101 NumPad 5 (NumLock ON)
 102 NumPad 6 (NumLock ON)
 103 NumPad 7 (NumLock ON)
 104 NumPad 8 (NumLock ON)
 105 NumPad 9 (NumLock ON)
 106 NumPad *
 107 NumPad +
 109 NumPad -
 110 NumPad .
 111 NumPad /
 112 F1

 113 F2
 114 F3
 115 F4
 116 F5
 117 F6
 118 F7
 119 F8
 120 F9
 121 F10
 122 F11
 123 F12
 124 F13
 125 F14
 126 F15
 127 F16
 128 F17
 129 F18
 130 F19
 131 F20
 132 F21
 133 F22
 134 F23
 135 NumPad Enter (or F24?)
 144 NumLock
 145 ScrollLock
 186 ; : Key*
 187 = + Key*
 188 , < Key*
 189 - _ Key*
 190 . > Key*
 191 / ? Key*
 192 ' @ Key*
 219 [{ Key*
 220 \ | Key*
 221] } Key*
 222 # ~ Key*
 223 ` ¬ ¦ Key*

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is possible that
keys in the same relative position on the keyboard will respond similarly, so here is a positional description for those of you without
UK keyboards. This list is in left-to-right, top down order, scanning the keyboard:

 223 ` ¬ ¦ is top left, just left of the main keyboard 1 key
 189 - _ is also in the top row, just to the right of the 0 key
 187 = + is to the right of 189
 219 [{ is in the 2nd row down, to the right of the alpha keys.
 221]} is to the right of 219
 186 ; : is in the 3rd row down, to the right of the alpha keys.
 192 ' @ is to the right of 186
 222 # ~ is to the right of 192 (tucked in with the Enter key)
 220 \ | is in the 4th row down, to the left of all the alpha keys
 188 , < is also in the 4th row down, to the right of the alpha keys
 190 . > is to the right of 188
 191 / ? is to the right of 190

The shifts value is a combination (add them) of the following values, as needed:
1 Shift
2 Control
4 Tab
8 not used
16 Alt (take care with this one—it invokes the Menu)
32 Windows key (left or right)
64 Apps Menu key (the application key, to the right of the right Windows key)

 NOTE that this is different to previously documented shifts – the earlier list was in error, having ‘Tab’ at value 8 and a second ‘Alt’ at value 4.

 20

The COM Library (also WideClient)
Note that this now handles both normal COM port serial transfers, whether via a USB serial adapter or direct via a
COM port, but also HID (Human Interface Device) transfers, normally related exclusively to USB connections.

Routine template Description
handle, rd, rdf, wr, initreport =
com.openhid(VID, PID, unit,
repno)
Or
handle, rd, rdf, wr, initreport =
com.openhid(“vendor”, “product”,
unit, repno)

This opens the HID device identified either by the VendorID
and ProductID, or by names or partial names identifying the
same things. In the “vendor”, “product” form the string will
be used to match anywhere in the actual device details, so
“Widget” will match “American Widgets Inc”, as an example.

Numerical VIDs and PIDs must match exactly, and are
usually given in hexadecimal (0xXXXX). These can be found
from the Device Manager details in Windows, or by using
extra logging in FSUIPC or WideClient (see note at the end of
this section).

The unit parameter identifies one of several identical units,
counting from 0. The unit numbers are assigned in the order
in which Windows enumerates them, which probably depends
on how they are plugged in. This parameter, along with the
following one, can be omitted to default to unit 0 (okay for 1
unit), and Report #1 (the usual default).

The repno value identifies the default input report number to
be requested for the initial state.

As you can see, there are several returned values. You do not
have to use them all, of course.

The handle returned will be zero if the device could not be
opened.

The ‘rd’, ‘rdf’ and ‘wr’ values provide the device-defined
fixed sizes of input reports, SetFeature data, and output
reports, respectively. You should use these values to define
the size of data being read and written.

The ‘initreport’ value is a string of bytes providing the first
input report after opening. This gives you the initial state –
usually switch positions and the like.

For joystick type HID devices the additional data processing
facilities embodied in the following functions should be used.
The first three of these operate on Input Reports (length 'rd'):

com.gethidvalue
com.gethidbuttons
com.testhidbutton
com.gethidcount

handle = com.open("port", speed,
handshake)

This opens the serial comms port named "port" (e.g.
"COM1"), with settings:

Speed = baudrate, e.g. 115200 for VRInsight devices, often
4800 or 9600 for GPSs.

Handshake defines the protocol for controlling the flow:

0 = none
1 = RTS / DTR line levels
2 = XON / XOFF
3 = Both of the above

The port is always opened in 8-bit no parity mode.

The handle returned will be zero if the port could not be
opened. If the port is already opened by FSUIPC for use in its
handling of VRInsight devices, the com.open call will
succeed and be granted access to the same port.

 21

com.close(handle) This simply closes the port represented by the given Handle.
It should always be used before the Lua program terminates.

n = com.connected(handle)

[Not WideClient nor FSUIPC3]

Returns an integer relating the state of the HID device
identified by the handle ‘dev’ returned by the com.openhid
function. This is an integer from 0-3 as follows:

0 disconnected, no change from last query
1 connected, no change from last query
2 now disconnected
3 now re-connected

Initially the device must be connected, as otherwise the
openhid would fail and you would not get a proper handle.

n = com.test(handle) Returns the number of bytes of data available to be read on
the port represented by the given Handle.

str, n = com.read(handle,max)
str, n = com.read(handle,max,min)
str, n = com.read(handle,max,min,
term)

Reads up to 'max' bytes from the port, returning them as a
string in 'str' with the number actually read returned in 'n'.

If the 'min' parameter is also given, this returns a null string
and n=0 until at least that minimum number of bytes are
available. It does not block waiting for them. If you specify -1
as the minimum then the terminating character ('term') must
be seen before the function returns a non-zero result, unless of
course the 'max' size is reached first.

The 'term' parameter specifies an ASCII value (0 to 255)
which is to be treated as a terminator for each block. This
character is included in the returned count and string.

Note that you can use the event library function, event.com
to perform reads and call your Lua back when there is data to
process. This can be more efficient and tidier than a program
which uses continuous loops to scan the input.

str, n = com.readfeature(handle,
repno)

Reads the feature bytes from the HID device via the
“GetFeature” call. The report ID to be used is given as
“repno”, or 0 if none are used.

The returned value gives the data returned by the device, with
the report ID in the first byte. “n” is zero if there was an error.

str, n = com.readreport(handle,
repno)

Reads the input report bytes from the HID device via the
“ReadInputReport” call. The report ID to be used is given as
“repno”, or 0 if none are used.

The returned value gives the data returned by the device, with
the report ID in the first byte. “n” is zero if there was an error.

str, n = com.readlast(handle,
len)
str, n, discards =
com.readlast(handle, len)

This is the same as com.read, above, but with a fixed block
size assumed (given by 'len'), and with all currently available
blocks discarded except the last, which is supplied.

The number of discarded blocks is returned as a third result
should it be wanted.

This function might be useful in polling situations where the
rate at which data arrives might exceed the polling rate or
capabilities of the Lua system. HID joysticks scanning is a
prime example. Rather than process older records and get a
larger unwanted lag that is necessary it enables an efficient
way of only processing the most recently received state.

n = com.write(handle, "string")
n = com.write(handle, "string",
len)

Writes the string to the port. If the length parameter is
provided, the string is either extended by zero bytes to that
length, or truncated, whichever is the more appropriate.

The returned value gives the number of bytes actually sent (or
at least, placed in the buffer).

 22

n = com.writefeature(handle,
“string”, len)

Writes the string to the HID device via the “SetFeature” call.
The length should equal the ‘wrf’ value returned by the
com.openhid function.

 The returned value gives the number of bytes actually sent
(or at least, placed in the buffer).

n = com.gethidvalue(handle,
"axis", str)
n1, n2, ... =
com.gethidvalue(handle, "axis",
str)
(up to 16 results)

If the open HID device is a joystick type, this can be used to
read any analogue (axis) or POV value it might return. The
'str' parameter refers to the data, of length 'rd' (see
com.openhid), returned by com.read or com.readlast,
The "axis" parameter is one of the following axis names:
"X", "Y", "Z", "R" (or "RZ"), "U" (or "RX"), "V" (or "RY"),
"POV" (or "HAT"), "Rudder", "Slider", "Dial", "Wheel", or
"Throttle".
A HID device might support any number of each of these.
The com library supports up to 16 axes of each of these types.
Alternatively you can give a one-byte "usage" code for non-
standard analogue values, ones not even supported by
DirectInput.
Use the com.gethidcount function to retrieve the numbers of
any of the named axis types and the maximum value it can
return.

N = com.gethidbuttoncount(handle)
[NOT FSUIPC3]

Returns the number of buttons on the optn HID device.

X = com.gethidbuttons(handle,
str)

X1, X2, ... =
com.gethidbuttons(handle, str)
(up to 8 results)

If the open HID device is a joystick type, this can be used to
read the state of all the buttons it might support, up to a
maximum of 256 buttons. The 'str' parameter refers to the
data, of length 'rd' (see com.openhid), returned by com.read
or com.readlast,

The values returned each contain up to 32 button states,
buttons 0-31 in the first 32-63 in the second, and so on.

X = com.testhidbutton(handle,
btn, str)

If the open HID device is a joystick type, this can be used to
test the state of 256 buttons, numbered 0-255. The 'str'
parameter refers to the data, of length 'rd' (see com.openhid),
returned by com.read or com.readlast,

The return is true or false.
n, max = com.gethidcount(handle,
"axis")

This returns information about the analogue value (axis)
named. 'n' gives the number of such axes supported (which
may be 0) and 'max' gives the maximum value they can
return.

The axis names which can be used are

"X", "Y", "Z", "R" (or "RZ"), "U" (or "RX"), "V" (or "RY"),
"POV" (or "HAT"), "Rudder", "Slider", "Dial", "Wheel", or
"Throttle".

The com library supports up to 16 of each of these axis types.

NOTE: Logging HID devices in FSUIPC.

You can get a list of all HID devices connected to your PC, as well as their comings and goings, by adding these lines to the
FSUIPC.INI, FSUIPC4.INI or FSUIPC5.INI [General] section:

Debug=Please
LogExtras=512

To do the same in WideClient, change the Log= parameter in the [user] section to “Log=HID”.

 23

The Event Library (also WideClient, but not for all events, as noted)

Events allow you to build plug-ins which rather than running continuously in a loop in order to interrogate things
can be set to stay loaded but dormant waiting for those things to occur. Almost anything which can be done in a
continuously running loop can be done more tidily and pleasingly using events instead.

Events rely on you specifying two things: what it is you want to monitor, and which pre-defined function, in your
program (or called up by Require) you want to run when the monitored event occurs. There is no specific
restriction on how many different events you can monitor in one program, nor how many times you can trap the
same event for different functions. But note that, whilst FSUIPC does keep track of separate events, it does not
queue multiple identical events. If a button is pressed 20 times before you process it, you only see it once. Therefore
if you are monitoring things which can happen repetitively you will need to keep your processing short enough if
you hope to catch them all.

The function name provided as a string in the Lua event function calls can now be functions in tables. This enables
functions in Modules, brought in by the require function, to be used for event processing, because Modules so
enabled provide tables of functions (and other values) for access in the current program. The format of the function
reference string must be <table>.<function>, so if the Module is named (or equated to) "M", say, then function "fn"
inside it would be referred to as "M.fn" in the event function. (The alternative form "M[fn]" is not allowed). The
facility is actually extended to handle tables within tables, to no set limit other than the entire string name must be
less than 64 characters (between the "").

A Lua plug-in with any events being monitored stays running (or rather dormant, awaiting those events) until it
either explicitly terminates (via ipc.exit), fails through some error, or cancels its last outstanding event monitor.

Routine template Description
event.button(joynum, button,
“function-name”)
event.button(joynum, button,
downup, “function-name”)
event.button("joyletter", button,
“function-name”)
event.button("joyletter", button,
downup, “function-name”)

Your processing function:

function-name(joynum, button,
downup)

[Not WideClient]

Executes the named function (named as a string, “...”), which
must be defined before this line, when a given joystick button
changes.

 “joynum” is a joystick number, the same as shown in
FSUIPC’s Button assignments tab. If you use joystick
lettering, you can put the letter here instead but it must be ""
quotes, as a string. Note, however, that the function is called
with the translated number as its first parameter.

The joystick device concerned can be any supported device
on the FS PC or any WideFS client. This includes Windows
joysticks, GoFlight modules, and EPIC devices, but not the
Virtual Buttons.

The button number provided can be 0–31 for normal buttons,
32–39 for 8-way POV (local Windows devices only), or 255
to indicate that the function should receive all 32 button states
when any change.

Except for the button “255” case, the optional “downup”
parameter specifies the change to be detected:

Omitted when pressed
1 when pressed
2 when released
3 when pressed or released (see Note * below)

Special button number 40 can be specified to indicate that the
event is required on any of the POV states 32-39, also
according to the given 'downu' parmeter.

The function is called with the joystick, button and downup
details so that the same function can, if desired, be used for
more than one such event.

In the special case of the button being specified as 255, then
any button change (buttons 0–31, not POV) on the specified
joystick will result in the function being executed with the
button state provided in the ‘button’ parameter as a 32-bit
mask—bit 0 referring to button 0 and so on.

 24

event.com(handle, max, min, term,
“function-name”)
event.com(handle, max, min,
“function-name”)
event.com(handle, max, “function-
name”)

Your processing function:

function-name(handle, datastring,
length)

This event works with the com library—described earlier—
providing a way of continuing to receive data using an event-
driven program rather than a continuous loop doing com.read
calls. Effectively the event.com call sets up FSUIPC do do
the reads for you, passing received data to your function when
available.

The parameters max, min, and term are used as described in
the section on the com.read function, earlier.

The data read is passed back as the datastring parameter to
the named function. Your program doesn’t need to perform
any reads itself, though there’s nothing stopping it—and it
may be wise if there’s more expected

event.comconnect(handle,
“function”)

Your processing function:

function-name(handle, status)

[Not WideClient nor FSUIPC3]

This event is triggered when the previously opened HID
device (using com.openhid) identified by handle disconnects
or re-connects.

The function is called with two parameters:

 handle supplied for cases where the same function is
used for multiple devices.

 status a boolean value, true if the device has re-
connected, false if it has dis-connected

event.control(controlnum,
“function-name”)
event.control(controlnum, delta,
“function-name”)

Your processing function:

function-name(controlnum, param)

[Not WideClient]

Executes the named function (named as a string, “...”), which
must be defined before this line, when the specified FS
control occurs. FS controls are those numbered from 65536
upwards, and listed in my FS control lists.

If the control is an axis-type control, with a parameter, you
can limit the flood of calls you might otherwise get for a
changing axis by specifying the “delta” parameter. This is a
positive number which tells FSUIPC to only call the function
when the parameter from FS changes by at least that amount.

The control number and its parameter are supplied to the
function so that the same function can, if desired, be used for
more than one such event.

event.flag("function-name")
event.flag(flag, "function-name")

Your processing function:

function-name(flag)

[Not WideClient]

Executes the named function whenever one of this plug-ins
Lua flags is changed (by one of the LuaSet, LuaClear or
LuaToggle controls).

If no flag number (0–255) is provided, any of the 256
changing will trigger the event. Otherwise only the selected
flag will do so.

The flag number provided to the named function is the one
which changed to trigger the event.

event.gfd("function-name")
event.gfd(model, "function-name")
event.gfd(model, unit, "function-
name")

Your processing function:

function-name(model, unit)
This should normally start with a
call to gfd.GetValues(model, unit)
which makes all the the inputs
accessible within the event
processing function. See details in
the gfd section below.

[Not WideClient]

This executes the named function whenever an input occurs
on the identified GoFlight device(s).

If both "model" and "unit" parameters are omitted, inputs
from all connected devices will attempt to trigger this
function, whilst if only the "model" is given, only all units of
that model type will.

The "model" parameter should normally be one of the fixed
model names listed in the gfd library section below. these are
pre-defined and equated to internal model numbers, in the
range 1 to the maximum number of model types.

Unit numbers start from 0 and are assigned in ascending order
by the Go-Flight interface, GFDev.DLL, which must be
accessible.

Note: If it is likely that you will get simultaneous events from
different devices, whether of the same model or not, then you

 25

should consider having separate Lua plug-ins, as otherwise
you may lose some events—only one event is handled at a
time, and they are not queued.

event.intercept(offset, “type”,
“function-name”)
event.intercept(offset, “STR”,
length, “function-name”)

Your processing function:

function-name(offset, value)
[Not WideClient]

Executes the named function (named as a string, “...”), which
must be defined before this line, when the specified FSUIPC
offset is written to by any FSUIPC or WideFS client
application or internal module or gauge. The write is
intercepted—i.e. prevented from actually affecting the
specified offset. It is then up to the intercepting Lua function
to decide whether to write the (possibly modified) value to the
same offset or not. If it does it must actively do it using the
appropriate ipc.writeXXX() function as described earlier.

Note that the offset write is only intercepted if it is explicitly
addressed in the request from the FSUIPC client. If the client
writes to the offset as part of a larger area, with an earlier
starting point, the intercept will not occur. However, for all
practical applications this should not present any problems.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

The type is one of these:

UB unsigned 8-bit byte
UW unsigned 16-bit word
UD unsigned 32-bit dword
SB signed 8-bit byte
SW signed 16-bit word
SD signed 32-bit dword
DD signed 64-bit value
DBL 64-bit double floating point
FLT 32-bit single floating point
STR string of ASCII characters

The length parameter is omitted (or ignored) except for the
“STR” type, where it must define the string length (max 256).

The function is called with the offset, so that the same
function can, if desired, be used for more than one such event,
and also the current (new) value in that offset. This will be a
Lua number for all types except STR where it will be a string.

event.key(keycode, shifts,
“function-name”)
event.key(keycode, shifts,
downup, “function-name”)

Your processing function:

function-name(keycode, shifts,
downup)

[Not WideClient]

Executes the named function (named as a string, “...”), which
must be defined before this line, when a given keypress
combination occurs.

The key code provided is one of the standard list (see the
FSUIPC Advanced User’s guide), and the “shifts” represent
and combination of these (add them up). An 8 or zero value
refers to the plain key:

1 Shift
2 Control
4 Alt
16 Tab
32 Windows
64 Apps

The optional “downup” parameter specifies the change to be
detected:

Omitted when pressed
1 when pressed
2 when released
3 when pressed or released (see Note * below)

To receive repeats the "downup" parameter must be specified,
with '4' added to the documented values, so that:

4 pressed +repeats

 26

5 pressed +repeats
6 same as 2, only release
7 pressed, + repeats, +release

The function is called with the key and downup details so that
the same function can, if desired, be used for more than one
such event. The "downup" parameter in the called function will
be 3 for a repeated press, 1 for an initial press and 0 for a release.

event.Lvar("lvarname", interval,
"function-name")

Your processing function:
function-name(varname, value)

[Not WideClient]

This monitors the value of the given local gauge variable
("L:Var") at the given interval, and calls the function when it
a change in the value is detected.

The L:var name can be in the form "L:name" or just "name",
but when our declared function is called the name provided is
without it's L: part. It is provided in the call so that the same
function can be used for multiple variables if required.

The interval is in milliseconds and has a minimum value of
100. it is not optional.

The function will never be called if there is no matching
L:Var, so you need not worry about checking the correct
aircraft or gauge is loaded. No error will occur.

event.mousehoriz("function-name")
event.mousehoriz(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This causes the function to be called whenever the horizontal
(left/right) movement of the mouse wheel is detected, on
those mouse types which are so equipped.

The 'method' parameter, if given, specifies the type of x,y
coordinates to be supplied in the call. It can be 0, 1 or 2, with
0 defaulted, for screen coordinates, FS window coordinates,
or FS window proportion (0-100%, so 50,50 = centre). This is
also the choice available in the mouse library.

The 'move' parameter supplied is +ve for right, -ve for left,
with the vaue indicating how much (in 'clicks' or Windows
'delta' units, usually +1 or -1).

The flags parameter is a set of bits indicating these (columns
are bit number, decimal value, meaning when set):

0 1 Left button is down
1 2 Right button is down
2 4 Shift is pressed
3 8 Ctrl is pressed
4 16 Middle button is pressed
5 32 eXtra button 1 is pressed
6 64 eXtra button 2 is pressed
15 32768 Mouse is outside FS window

event.mousehoriztrap("function-
name")
event.mousehoriztrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mousehoriz function above
except that the action of the mouse is trapped -- it is not
passed on to FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.hwheel
function to pass it down.

event.mouseleft("function-name")
event.mouseleft(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

This causes the function to be called whenever the left mouse
button is pressed or released whilst within the FS window
which has the mouse focus.

The 'method' parameter is used as described for
event.mousehoriz, above. The 'move' parameter is always 0.
The flags parameter is a set of bits indicating these (columns
are bit number, decimal value, meaning when set):

 27

[FSUIPC4/5 only] 0 1 Left button is down
1 2 Right button is down
2 4 Shift is pressed
3 8 Ctrl is pressed
4 16 Middle button is pressed
5 32 eXtra button 1 is pressed
6 64 eXtra button 2 is pressed

event.mouselefttrap("function-
name")
event.mouselefttrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mouseleft function above except
that the action of the mouse is trapped -- it is not passed on to
FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.click
function to pass it down.

event.mousemiddle("function-
name")
event.mousemiddle(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This causes the function to be called whenever the middle
mouse button is pressed or released whilst within the FS
window which has the mouse focus.

The parameters and results are all as described for
event.mouseleft, above.

event.mousemiddletrap("function-
name")
event.mousemiddletrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mousemiddlefunction above
except that the action of the mouse is trapped -- it is not
passed on to FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.click
function to pass it down.

event.mousemove("function-name")
event.mousemove(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This causes the function to be called whenever the mouse is
moved whilst within the FS window which has the mouse
focus.

The parameters and results are all as described for
event.mouseleft, above.

event.mousemovetrap("function-
name")
event.mousemovetrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mousemove function above
except that the action of the mouse is trapped -- it is not
passed on to FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.move
function to pass it down.

 28

event.mouseright("function-name")
event.mouseright(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This causes the function to be called whenever the right
mouse button is pressed or released whilst within the FS
window which has the mouse focus.

The parameters and results are all as described for
event.mouseleft, above.

event.mouserighttrap("function-
name")
event.mouserighttrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mouseright function above
except that the action of the mouse is trapped -- it is not
passed on to FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.click
function to pass it down.

event.mousewheel("function-name")
event.mousewheel(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This causes the function to be called whenever the
forward/backward movement of the mouse wheel is detected,
on those mouse types which are so equipped.

The parameters and results are all as described for
event.mousehoriz, above, except that if the wheel is moved
very fast you can receive values for the 'move' parameter in
excess or 1 and -1, for the number of 'clicks' of movement.

event.mousewheeltrap("function-
name")
event.mousewheeltrap(method,
"function-name")

Your processing function:
function-name(x, y, move, flags)

[FSUIPC4/5 only]

This is identical to the event.mousewheel function above
except that the action of the mouse is trapped -- it is not
passed on to FS or other programs further down the chain.

If you use this facility and you want to pass on the action in
some circumstances you would need to use the mouse.wheel
function to pass it down.

event.offset(offset, "type",
"function-name")
event.offset(offset, "STR",
length, "function-name")

Your processing function:
function-name(offset, value)

Executes the named function (named as a string, “...”), which
must be defined before this line, when the specified FSUIPC
offset changes

The function is also executed initially, when the plugin is first
run, in order to initialise things. This saves using an explicit
call to do the same.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

The type is one of these:

 29

UB unsigned 8-bit byte
UW unsigned 16-bit word
UD unsigned 32-bit dword
SB signed 8-bit byte
SW signed 16-bit word
SD signed 32-bit dword
DD signed 64-bit value
DBL 64-bit double floating point
FLT 32-bit single floating point
STR string of ASCII characters

The length parameter is omitted (or ignored) except for the
“STR” type, where it can optionally define the string length
(max 256). If the length is omitted for the STR type then the
string will be zero terminated and will have a maximum
length of 255 not including the final zero.

The function is called with the offset, so that the same
function can, if desired, be used for more than one such event,
and also the current (new) value in that offset. This will be a
Lua number for all types except STR where it will be a string.

event.offsetmask(offset, mask,
"type", "function-name")

Your processing function:
function-name(offset, value)

[Not FSUIPC3]

Executes the named function (named as a string, “...”), which
must be defined before this line, when the specified FSUIPC
offset changes only in the bits set in the mask value -- i.e. the
value given by logic.And(offsetvalue, mask) changes.

The function is also executed initially, when the plugin is first
run, in order to initialise things. This saves using an explicit
call to do the same.

The offset can be specified in Lua format hexadecimal, e.g.
0x0AEC, or in decimal, or as a string e.g. “0AEC”.

The type is one of these:
UB unsigned 8-bit byte
UW unsigned 16-bit word
UD unsigned 32-bit dword
SB signed 8-bit byte
SW signed 16-bit word
SD signed 32-bit dword

The difference between signed and unsigned values here has
no effect . The values are treated as a collection of 8, 16 or 32
bits.

The function is called with the offset, so that the same
function can, if desired, be used for more than one such event,
and also the current (new) masked value in that offset. This
will be a Lua number, with only the masked part present (i.e.
the result after "Anding" the original with the mask).

event.param(“function-name”)

Your processing function:

function-name(param)

[Not WideClient]

The calls the declared function when the ipcPARAM variable
for this plug-in is changed externally to the plug-n code. That
is by use of the LuaValue <name-of-plugin> control. If this
is assigned to an Axis in FSUIPC axis assignments it provides
the value from that axis, otherwise it is the parameter given in
the button or key assignment.

The value 'param' provided as the parameter to the called
function is also stored in the ipcPARAM variable.

Note that if the LuaValue control for this plug-in is assigned
to multiple sources there is no way to distinguish how the
parameter value arose.

event.sim(event-type, “function-
name”)

Your processing function:

This executes the named function when a specific type of
event occurs in the Simulator. The types currently available
are:

 30

function-name(event-type)

CLOSE: the flight simulator is closing down (or, in the case
of WideClient, WideClient is closing down or the
simulator is closing down (you can’t tell which).

 This gives the plug-in a chance to tidy things up before
exiting tidily with an ipc.exit call. Note that if the tidy-
up involves logging or sending stuff to a device, you
may need an ipc.sleep call before the exit in order to
allow those things to clear.

FLIGHTLOAD: a flight has just been loaded.

FLIGHTSAVE: a flight has just been saved

AIRCRAFTCHANGE: the aircraft has been changed

ANY: any of the above—use the parameter to determine
which.

 Note that the ANY method is unlikely to catch all
events. Only one event can be signalled at a time, but
loading a flight often means an aircraft change too.
ANY would only catch one of those. Similarly a flight
save often occurs just before FS closes. Only one of
those might be seen. Therefore, if catching everything is
crucial, it is best to use the individual events.

event.textmenu(type, "function-
name"
Your processing function:

Function-name(type, colour,
scroll, delay, id, n, msgs)
[only in FSUIPC5 since version
5.142, and WideClient with FSX
SP2 and later, or P3D v2 and
later]

This event instructs FSUIPC4 (registered versions 4.924 and
later) or FSUIPC5 (version 5.13 and later) to intercept text
and menu calls into SimConnect and send the details on to
WideClient. Currently it is only implemented for FSX
Acceleration and SP2, and in P3D since version 2.

With FSUIPC4 this does not apply to calls to SimConnect
made through FSUIPC4 itself nor those from other internal
add-ons (DLLs and Gauges), only those made directly by
external applications.

For FSUIPC4 this facility may need enabling in FSUIPC by
setting this parameter in the INI file [General] section:
 NewInterceptTextMenu=Yes

This is the default value. To remove the menu from the screen
use NewInterceptTextMenu=Full

At present it is not possible to suppress the display of menus
on screen. Well, it can be done, but then SimConnect never
sends the user selection back to the application. You can have
the menu made smaller and moved top left, maybe out of the
way a bit.

In P3D version 1 and 2, but not 3, the menu is fully removed
from the P3D screen.

The facility does not need enabling in FSUIPC5. It is always
available. However, whilst it is not possible to remove menus
in P3D4 you can remove the other texts by a facility in the
P3D4 user interface options. FSUIPC has no such direct
control.

The 'type' is 1 for a text message, and 2 for a menu. If you
want to get both set the 'type' to 0 in the event function.

With P3D4 with FSUIPC 5.13 or later, and WideClient
7.145 or later this is expanded into a set of bit flags, as
follows:

 2^0 Text message
 2^1 SimConnect Menu
 2^2 SimConnect Window (eg Lua displays)
 2^3 Active Sky planned weather summary
 (ASNweatherBroadcast control, 1143)

 31

 2^4 Text file reading option
 (Intended for use with Pilot2ATC: more
 details will be published separately)

These can be combined as required. For example, 3 is the
same as 0 and thus the same as the older behaviour.

The colour applies only to text messages and is one of these
values: 0=black, 1=white, 2=red, 3=green, 4=blue, 5=yellow,
6=magenta, 7=cyan.

The scroll parameter is true or false, but again only applies to
text messages, not menus.

The delay parameter is 0 for 'display till replaced, or
answered', or otherwise is the number of seconds before the
display should be cleared.

The ID is a numeric value specified by the program which
originated the request. It may or may not be unique, but it
might be useful to filter specific messages.

'n' is the number of messages in this request. This is always 0
or 1 for a message type -- 0 would mean clear the message.
For a menu it can be 0 to clear the menu, but otherwise it is
the number of menu items PLUS TWO. The first two are the
menu title and menu request for action. The remaining
messages will be the choices.

'msgs' is a table containing n messages. Access them by
msgs[1[through to msgs[n].

For the new Text File option, the msgs will be complete
paragraphs whilst n is the number of paragraphs. They are not
separate lines.

A simple example Lua is provided which combines the "Radar
Contact" example in the wnd library section of this document
with a handler for the text and menu facilities, all on the same
screen. (see "TextMenu.lua").

Further examples of the more advanced features recently
added, with a complete set of Lua plug-ins handling the
various display types, will be published with the updated
WideClient (7.145 or later).

event.timer(msecs, “function-
name”)

Your processing function:

function-name(time)

This simply calls your function regularly, at the interval
specified (in milliseconds).

You can use this in event-driven plug-ins for polling, flashing
lights, etc, rather than resorting to loops.

Note that each Lua plug-in is restricted to one timer. If you
specify another it replaces the previous one. If you need
different intervals for different things, set the timer for the
lowest common factor and use the time, in milliseconds,
passed to your function as parameter to determine the
intervals.

The time provided is NOT the same as the one returned by the
ipc.elapsedtime function.

event.vriread(handle, "function-
name")
Your processing function:

function-name(handle, "data")

[Not WideClient]

This is an extension to the com library, described earlier,
specifically for use with VRInsight devices.

It executes the named function whenever an apparently valid
VRInsight input arrives on the identified VRInsight device.
The latter is identified by the "handle" to the device returned
by a com.open call made previously.

The "data" provided to the function will be the 1 to 8-
character string supplied by the device. Please see the
document "Lua plugins for VRInsight devices".

 32

event.cancel(“function-name”) This simply removes all event tracking by the named
function. This is typically used in a Lua program which uses
one or two specific events to start a mode where many other
events need to be monitored, but which are no longer needed.

An example might be some processing for a landing aircraft.
Perhaps the gear being lowered is the initiating event, at
which more events are requested. After the aircraft has
landed, the program can cancel these latter events and go back
to waiting for the next time the gear is lowered.

A Lua plug-in with any events being monitored stays running
(or rather dormant, awaiting those events) until it either
explicitly terminates (via ipc.exit), fails through some error,
or cancels its last outstanding event monitor.

event.terminate("function-name") This is called when the Lua thread is being forcibly
terminated for any reason. the Lua program then has a further
5 milliseconds to do any essential tidying.

NOTES
* If you really do need to detect both Key or Button presses and releases, and the action is possibly going to be
quite fast (i.e. not latching, as with a toggle switch), then you should specify the event separately for “down” and
“up” rather than use the combined facility. This is because there is no queuing of different event types within each
event request—only a count of how many—so the order and nature of the press/release operations will be confused
and some may be seen wrongly.

The separate event calls for the press and release can of course still both specify the same function-name, so the
effect is still going to be similar. However, because of the asynchronous nature of the key/button scanning in
relation to the plug-in threads, whilst you will not miss any presses or releases this way, you may process them in
the wrong order.

You could, of course, deal with the problems either method may present by keeping a local flag showing the press
or release state, rather than relying only on the “downup” parameter provided in the call to your function.

 33

The SOUND Library (also WideClient)

Routine template Description
sound.adjust(ref)
sound.adjust(ref, vol)
sound.adjust(ref, vol, posn)

Adjusts the volume and/or position of a playing sound,
defined by the 'ref' value returned from the play or playloop
functions.

The vol and posn values are as described below for the play
function. If posn is omitted 0 is assumed (centre forward),
and if they are both omitted full volume (100) centre forward
position is assumed (i.e., like a "reset to norm").

str = sound.device(devnum) This returns the device name string for the sound device
known by the given number. Note that 0 means "default
device" and is always the same as number 1.

The device names are listed against their numbers in the
[Sounds] section of the INI file.

sound.path("path-to-sounds") The default path for wave files is the Sound subfolder in FS
(or, for WideClient, a Sound sub-folder in the WideClient.exe
folder).

This can be changed by editing the Path parameter in the INI
file, or, for the sounds called by this Lua program only, by
setting a temporary path via this function.

The path will be within the current default path if it does not
contain a drive reference, such as "c:".

ref = sound.play("name-of-wave")

ref = sound.play("name-of-wave",
devnum)

ref = sound.play("name-of-wave",
devnum, vol)

ref = sound.play("name-of-wave",
devnum, vol, posn)

Plays the wave with the given name. This must be a "wav"
file, but you can omit the ".wav" part.

If the device number is omitted, the default is used (device 0).

The vol (volume) is a % value between 0% and 100%. This
isn't the complete range from silence ot max, but 0 is very
quiet. This defaults to 100.

The posn (position) is a value in degrees from 0 to 359
representing the circle around the PC, with 0 being forward
centre. This is approximated as well as possible for the sound
device being used. For a stereo setup, the circe collapses to a
left-right spectrum.

A position given as -1 will play on all speakers.

Unlike FS sounds, this sound will play regardless of whether
FS (or WideClient) has the current Focus. If you want the
sound to be suppressed when FS/Wideclient does not have the
focus, specify the volume parameter as a negative value 9e.g.
-100 for max volume, but local to the program).

The "ref" value returned is a number which can be used
subsequently in the stop, adjust and query functions.

Note that sounds are "global" in the sense that they don't stop
when the Lua program ends or is killed..

ref = sound.playloop
... with the same parameters and
variations as for "sound.play"
above

This is identical to sound.play except that the wave file is
looped—forever ,or until you stop it with a sound.stop call.

In this case, it is very important that you note that sounds are
"global" in the sense that they don't stop when the Lua
program ends or is killed.

bool = sound.query(ref) This returns true if the sound is playing, false if it is not or if
there is no such sound.

sound.stop(ref) This strops the sound indicated by the reference, if it is still
playing. Otherwise it does nothing.

 34

The Go-Flight Device (gfd) Library

This library provides full facilities for reading inputs from Go-Flight devices and writing to their displays. It is
currently programmed to cover the following devices ("models". note the model code, which is used when
addressing the model type in all functions, including the event.gfd function already described.

GF166 GF-166 Versatile Radio Panel
GF45 GF-45 Avionics Simulation Unit or GF-45PM Display Panel Module
GF46 GF-46 Multi-Mode Display Module
GFATC GF-ATC Headset Comms Panel
GFDIO GF-DIO Digital Input/Output board (needs GFDev 1.20.0.1 or later)
GFEFIS GF-EFIS Control Panel Module
GFFMC GF-FMC Flight Management Computer Module
GFLGT GF-LGT Landing Gear/Trim control module
GFLGT2 GF-LGT II Landing Gear/Trim control module
GFMCP GF-MCP Advanced Autopilot Module
GFMCPPRO GF-MCP Pro Mode Control Panel Module
GFMESM GF-MESM Multi Engine Start Module
GFP8 GF-P8 Pushbutton/LED Module
GFRP48 GF-RP48 Rotary/Pushbutton/LED Module
GFSECM GF-SECM Single Engine Aircraft Control Module
GFT8 GF-T8 Toggle Switch/LED Module
GFTPM GF-TPM Throttle/Prop/Mixture Control Module*
GFTQ6 GF-TQ6 Throttle System
GFWP6 GF-WP6 Annunciator Panel

* The TPM is currently not recognised because of missing support in GFDev.DLL, and no information available on
its data formats.

As with FSUIPC's GoFlight button support, you need GFDev.dll installed on the FS PC to use this library.
Normally it is installed for you by the GoFlight installer—in this case it should be in the same folder as your
GFconfig program, probably in Program Files\GoFlight. When installed correctly, FSUIPC should be able to find it
automatically, via the GFconfig installed registry entry. If not, you will have to place GFDev.dll in an accessible
place. For FSX this can be the FSX Modules folder. For FS9 and before do NOT, repeat NOT, put it into the
Modules folder or you will crash FS. Try the main Windows folder.

The list above is based on the latest version of GFDev.dll available at the time of publication: 1.92.0.8, dated 30th
November 2009. The latest version I have is always available from my Support Forum.

Another important point to know when trying to operate GoFlight displays and indicators, whether using GFdisplay.exe or these
new Lua facilities, is that (at present at least), the GoFlight drivers do not co-operate well with other using programs. By all
means you can share access to knobs and switches, but the GF drivers seem to want to write to all displays and indicators on a
module even if only configred to use some of them. For each GoFlight unit you may have to make the choice: GF driver or
Lua/FSUIPC plug-in.

The full reference to the functions available in the Library is tabulated on the next page.

The GoFlight coverage may be revised from time to time. The test program (gfdDisplay.lua) supplied with this
package will show you what is covered. If you run this test program (i.e. assign a keypress or button to the drop-
down entry "Lua gfddisplay.lua" and use it), this is what you should expect, with a descriptive display in a "Lua
display" window on screen:

1. All LEDs lit and all Displays showing 8888....
2. The brightness is modified, from 0 to 15 (full) in steps
3. LEDs are alternated 1 0 1 0 1 0 and 0 1 0 1 0 1 four times whilst the displays are alternated 123456 and

654321 (or as many of those digits as can be accommodated).
4. All displays and LEDs should then be blanked / extiguished.
5. The program then processes inputs forever (until Killed), displaying and logging the results.

 35

Routine template Description
gfd.BlankAll() Blanks all digital displays (if possible) and switches all

indicator lights off.

n = gfd.Buttons()
or, for devices with more than 32
'buttons' (switch inputs really)
as on the GFDIO:

n1, n2 = gfd.Buttons()

Returns the state of all buttons supplied by the last call to
gfd.GetValues, described below. The states of up to 32
or 64 buttons or switches are provided, and these are
represented by one bit each in the returned values. Bit 0 (2^0,
worth 1) is the first button, bit 1 (2^1, worth 2) is the second,
and so on. When two resluts are read the second contains
buttons 32 to 63.

gfd.ClearLight(model, unit, id)
or, for multi-coloured units:

gfd.ClearLight(model, unit, id,
1)

This simply turns off the indicator light identified by the id
number, on the specified model and unit.

For multi-coloured indicators other than the GF-WP6 you
should use the second form. For example, the gear LEDs on
the LGT would have 'ids' 1, 2 and 3 using the second form.

n = gfd.Dial(id) Returns –n (counter-clockwise turn), 0 (no turn) or +n

(clockwise turn) for the rotary dial identified by 'id' (0–7) in
the input data supplied by the last call to gfd.GetValues,
described below.

The values of 'n' will be 1 for a slow turn, but larger nmubers
are possible for faster turns -- except for the RP48, whose
dials only ever seem to return -1, 0 or +1.

n = gfd.GetName(model) This returns the string name of the device of type 'model'. For

instance, the name of the model type GFMCPPRO is
"GFMCPPRO".

n = gfd.GetNumDevices(model) This returns the number of connected devices of type 'model'.

gfd.GetValues(model, id) This obtains all of the current input values from the identified

device. These values are subsequently accessible using these
separate functions:

gfd.Buttons() gfd.Selector(id)
gfd.Dial(id) gfd.TestButton(id)
gfd.Lever(id)

n = gfd.Lever(id) Returns the input value from the lever axis identified by 'id'
(0–7) in the input data supplied by the last call to
gfd.GetValues, described above.

n = gfd.ReadLights(model, unit) This reads the state of all the indicators on the specified

module, if this is actually possible on this module. Indicators
are numbered 0 to 31, with 0 being 2^0, worth 1 and so on.

If there is an error the value returned will be negative, as
follows:

-1 = unknown model
-2 = not a connected unit
-3 = indicator reads not supported on this module

Note that some versions of the LGT2 and RP48 modules
(notably the "mouse edition" of the latter) have firmware
deficiencies which cause the return here to be always zero.

 36

n = gfd.Selector(id) Returns the numeric position of the selector switch (multi-
position switch) identified by 'id' (0–7) in the input data
supplied by the last call to gfd.GetValues, described
above.

gfd.SetBright(model, unit, n) This sets the unit's display and indicator brightness, n=0 being

off and n=15 being brightest.

gfd.SetDisplay(model, unit, id,
"display text")

This attempts to write the given text (truncated if necessary)
to the display identified by the id number, on the specified
model and unit.

gfd.SetColour(model, unit, id, n)
or
gfd.SetColour(model, unit, id,
red, green, blue)

(Colour can be spelled "Color"
instead if you wish).

This is currently only supported for the GF-WP6, and pre-
sets the colour of indicator number 'id' either to the pre-
determined colour 'n' (0-7, see below), or to the colour
represented by separate red green and blue values, each one
being a value from 0 - 100.

Note that this function does NOT actually address the
hardware at all, but merely presets the colour to be used by
the SetLight or SetLights functions described below.

Pre-determined colour values are:
0 black, 1 white, 2 red, 3 green, 4 blue, 5 magenta, 6 yellow, 7 cyan

gfd.SetLight(model, unit, id)
or, for multi-coloured units:

gfd.SetLight(model, unit, id,
val)

This simply turns on the indicator light identified by the id
number, on the specified model and unit.

For multi-coloured indicators other than the GF-WP6 you
should use the second form. For example, the gear LEDs on
the LGT would have 'ids' 1, 2 and 3 using the second form,
with "val" set as follows:

1 = red, 2 = green, 3 = amber

For the GF-WP6 you can pre-set the colour using
gfd.SetColour, above.

gfd.SetLights(model, unit, on,
off)

This sets selected indicator lights on or off, on the specified
model and unit.

The 'on' and 'off' parameters are masks to determine those
indicators to be turned on (bits set in 'on') and those to be
turned off (bits set in 'off') Indicators not referenced by bits in
either mask are unchanged.

Indicators are numbered 0 to 31, with 0 being 2^0, worth 1
and so on. These numbers correspond to the indicator ids used
in SetLight and ClearLight.

n = gfd.TestButton(id) Returns true or false depending on the button/switch setting
(0–63) in the input data supplied by the last call to
gfd.GetValues, described above.

 37

The Wnd Library (WideClient only, added at version 6.953)

Routine template Description
w = wnd.open("title")
or

w = wnd.open("title", maxlines)
or

w = wnd.open("title", x, y, w, h)
or

w = wnd.open("title", maxlines, x, y,
w, h)
or

w = wnd.open("title", WND_FIXED, x, y,
w, h)

This creates the window and returns a window
handle. The window is named by the title and this
appears in the title bar if one is drawn.

Except for the WND_FIXED case, the window has a
title bar, a sizing border, and min/max/close buttons.
The size and position can therefore be set by the
user, and these values are saved, according to the
"title" in the [ExtWindow] section of WideClient's
INI file, and restored next time.

The 'maxlines' parameter determines how many text
lines are sent to the window before it scrolls. The
scrolling is automatic -- no scroll bars are provided.

The initial size and position can be specified in
screen pixels by the x, y, w and h parameters. the x,
y position refers to the top left corner.

The WND_FIXED option is different. there are no
sizing borders and no title bar. The user cannot
change its size or position.

In all cases you can use the ext.position function,
referring to the "title", to change the position, size
and even screen, using easier screen-relative
measures.

Multiple windows can be opened and controlled by
one or more Lua plug-ins, and unless closed
explicitly persist after the Lua program terminates. If
you want other plug-ins to use the same Windows
you need to pass the window handle on via the
global variable facilities (ipc.set and ipc.get)

wnd.close(w) Closes the window w.

Windows created by WideClient are also closed
when WideClient closes.

wnd.title(w, “new title”) Changes the title for the already opened window.

wnd.hide(w) Hides the already opened window,

wnd.show(w)

or (since WideClient 6.999z3):
wnd.show(w, Option)

Re-shows the already opened window.

The format with an extra parameter changes the way
the window is shown. The “Option” parameter
should be one of the following:

WND_MAX to maximize the window

WND_MIN to minimize the window

WND_RESTORE to restore the window to its
original size and position

WND_TOPMOST to make the window display on
top of all other non-topmost
windows.

 38

bool = wnd.clear(w)

Clears window w. Returns 'true' if okay, or 'false' if
window w doesn't exist.

bool = wnd.backcol(w, 0xRGB)

Sets the background colour of window w. Returns
'true' if okay, or 'false' if window w doesn't exist.

The colour is given as 3 hexadecimal digits, 0x000 to
0xFFF, with the digits representing the amount of
Red, Green and Blue in 16 steps. Thus 0x000 is
black and 0xFFF is white.

The background colour applies to the whole window,
but can be changed at any time.

bool = wnd.textcol(w, 0xRGB)

Sets the text colour of window w. Returns 'true' if
okay, or 'false' if window w doesn't exist.

The colour is given as 3 hexadecimal digits, 0x000 to
0xFFF, with the digits representing the amount of
Red, Green and Blue in 16 steps. Thus 0x000 is
black and 0xFFF is white.

The text colour applies text drawn from then on,
until changed. You can mix text colours on screen.

bool = wnd.font(w, face, size)
or

bool = wnd.font(w, face, size, options)

Sets the text font details. Returns 'true' if okay, or
'false' if window w doesn't exist.

The 'face' is one of

WND_ARIAL default
WND_TIMES Times New Roman
WND_COURIER Courier New, fixed space

The size is usually given in points, ranging from 4.0
to 300.0, default 12.0, but you can have it computed
automatically to provide n lines between the current
line and the end of the current Window. For the latter
use –n for the size, where n is the number of lines.

The options can be any mix of these (add them
together):

WND_BOLD, WND_ITALIC, WND_UNDER,
WND_STRIKE.

The font details apply for text drawn from then until
the font is changed again, so any mix can be used in
one window.

bool = wnd.text(w, "text")
or

bool = wnd.text(w, line, "text")

 Draws text in window w. Returns 'true' if okay, or
'false' if window w doesn't exist.

The optional line number specifies which line, of
those already drawn, should be replaced by this text.
Unless this is the current line, you must have such a
line already drawn if this is used. Lines start from 1.

Control codes found in the Text are replaced by
spaces except for new lines, returns and tabs. New
lines and returns give rise to multilined text, whilst
tabs are replaced by three spaces each.

So, the text can be multi-lined, though if used this
doesn't work well with the 'line number' facility.
Multiple lined text is best used on its own with a
wnd.clear being used before display for changes, but
new blocks of text will follow on from previous ones
and the text will scroll automatically.

 39

Since WideClient version 7.145 There’s an
additional option: setting the line number to -1 will
switch on word wrapping, so text which does not fit
in one line will be made to fit on multiple lines by
wrapping neatly at word breaks.

wnd.bitmap(w, "pathfilename") Draws a bitmap, loaded from the specified file, and
stretched or compressed to exactly fit the window
specified by 'w'.

Remember to use \\ for every \ in the full path -- Lua
demands this, otherwise the \ just makes the next
character a special control, or ignored.

The WXRadar.lua plug-in is an example of this.

EXAMPLE

This small Lua plug-in, saved as, say, "showtext.lua" in the same folder as WideClient, is used on my own system
instead of ShowText.exe, to show the Radar Contact menu:

w = wnd.open("Radar Contact", WND_FIXED, 1280,0,1024,768)
wnd.backcol(w, 0x000)
wnd.textcol(w, 0x0f0)
wnd.font(w, WND_ARIAL, -10, WND_BOLD)

function update(off, val)
 wnd.clear(w)
 wnd.text(w, val)
end

event.offset(0x3380, "STR", "update")

A much more advanced example of the power of this library, along with functions from the ext library, is included
with the latest releases of WideFS and WideClient. An assortment of Windows showing data from different sources
can be handled and selected by FSUIPC assignments using the package provided. A separate document explaining
things is included.

 40

The Display Library (WideClient only, added at version 6.895)

Routine template Description
handle = display.create("title",
entries, xpos, ypos)

Or (since WideClient 6.999z4)

handle = display.create("title",
entries, xpos, ypos, DSP_TOPMOST)

This creates the dialogue display, consisting of a
number of read-only edit boxes (the number given by
'entries', which must be in the range 1 to 16). The
width of the display is fixed, but the position on
screen may be set to the xpos and ypos valuse,
which determine the top left corner in screen pixels.

The dialogue can be put on top of all non-topmost
windows by adding the parameter DSP_TOPMOST.

display.clear(handle) This simply clears all the edit fields in the specified
display.

display.show(handle, entry, "text")
Or

display.show(handle, entry, type)

Displays the given "text" string in the field
numbered 'entry' (counting from 1, the top-most,
to 16 or the maximum in the created display.

The alternative call, with 'type' instead of a string is
used for special pre-coded displays built into
WideClient. The only ones currently available are:

RC1 displays a decode of Radar Contact 4's
waypoint line from its menu, if it is
currently available. Otherwise blank.

RC2 displays a decode of Radar Contact 4's
runway line from its menu, if it is currently
available. Otherwise blank.

display.close(handle) Closes the display. The hande is not valid after this
call.

Here's an example of such a display, this one created using the supplied example 'MyDisplay.lua":

Published by Peter L. Dowson, 21st November 2018

