
FSUIPC: Lua Plug-Ins
(For FSUIPC5 version 5.14 and later, or FSUIPC4 version 4.96 and later, or FSUIPC3 version
3.999z3 and later. Also WideClient 6.999n and later)

This document is part of the Manual for the LUA plug-in facilities first added to FSUIPC4 at
version 4.211, and FSUIPC3 at version 3.841. This part takes the form of a series of questions and
answers. The library reference document, "FSUIPC Lua Library" provides the technical data for
the FSUIPC Lua additions.

What is “Lua”?
It is a programming language. The best way to see and learn what it is all about is to visit this web page:

http://www.lua.org/about.html

What is a “plug-in”?
Plug-in is simply a technical term for a program which can be run inside or as part of another program. Effectively
FSUIPC is a “plug-in” for FS. The Lua facilities in FSUIPC allow multiple plug-ins by loading and running
individual Lua programs.

Why has this been added to FSUIPC?
Because I am often asked by users, especially cockpit builders, how to do quite sophisticated things with FSUIPC’s
quite basic button programming facilities, and adding Lua plug-in capabilities makes those much more powerful and
much easier to deal with and see what is going on.

The use of the compound and conditional button programming facilities, combined with multiple parameter
assignments to buttons, is not only awkward, it is really pushing the simple parameter design in the INI files to the
limit.

What is provided in FSUIPC for Lua programming?
First, FSUIPC recognises all files placed into the Modules folder that have filetype “.lua”. These should all be Lua
programs, either in normal interpreted source format or in the “compiled” format if desired (Lua provide a compiler
“luac.exe” which just saves a little loading time by pre-processing the source into a binary format easier for the
interpreter). Note that the filename part (preceding the .lua filetype) can contain spaces and other characters
acceptable to Windows, but there is a limit of 16 characters on that name.

All .lua files are assigned a numeric reference and listed with it in the [LuaFiles] section of the FSUIPC INI file. It
is the reference number which is encoded into other references to Lua programs within the INI file – much like the
way Macro files are handled.

When there are Lua files in the modules folder, FSUIPC adds a number of new controls for assignment in all of the
usual places – Buttons & Switches, Key Presses, and Axis Assignments. The controls added for each Lua program
are:

Lua <name> to run the named program
LuaDebug <name> to run the program in debug mode (more below)

This is superseded by the Trace Lua option in FSUIPC4’s Logging Tab.
LuaKill <name> to forcibly terminate the named program, if it is running
LuaSet <name> to set a flag (0-255 according to parameter) specifically for the named program to test
LuaClear <name> to clear a flag (0-255 according to parameter) specifically for the named program to test
LuaToggle <name> to toggle a flag (0-255 according to parameter) specifically for the named program to test
LuaValue <name> to set the ipcPARAM variable to the given parameter, or the axis value when so assigned

There’s also a general Lua control “Lua Kill All” to forcibly terminate all currently running Lua programs.

NOTE that the <name> in these assignments can only be up to 16 characters in length, so this restricts the names of
the Lua files provided for FSUIPC use in the FS Modules folder. The 16 does not include the ".lua" filetype, but
does include any spaces in the filename.

FSUIPC allows up to 256 simultaneously running Lua programs, each independently running in their own FS
thread. When you start a Lua program running which is already running, the previous incarnation is first ruthlessly
and unceremoniously terminated. Because of the termination facilities provided it is not a problem having a
program which is designed to sit in a loop forever doing things, like monitoring the state of FS values. However,
generally it is better to write those as event-driven programs—the event library provides the methods for this.
Note that, in order to prevent the over-rapid killing and resurrecting of the same plug-in over and over, there is a
limit imposed on the time between each resurrection. This defaults to 66 milliseconds (i.e. up to 15 cycles/sec), but
can be adjusted in the FSUIPC INI file by the parameter LuaRerunDelay. This really only affects assignments to
rotary encoders and axes, because button and key repetition is naturally limited in any case.

http://www.lua.org/about.html

There are currently three explicitly reserved Lua names, for programs which are run automatically if present:

ipcinit.lua automatically run as soon as FSUIPC has initialised (and for FSX or ESP, connected correctly to
SimConnect).

ipcready.lua automatically run when FS is really “ready to fly”.
ipcDebug.lua automatically loaded before any Lua program which is started in Debug mode.

Can I run Lua plug-ins on a WideFS client PC?
Yes. Such facilities have now been added. Since version 6.81, WideClient automatically runs any Lua programs it
finds in its own folder (i.e. the folder containing the WideClient.exe being used). These are started only after
WideClient is fully connected to FS on the server PC.

Additionally, WideClient will look for a Lua program called "Initial.lua" when it first starts up. This will run
immediately, before any access to FS and FSUIPC is obtained, so it should not be used for anything dependent upon
valid offset values. It can run other Lua programs, using the "ipc.runlua" function, but they will need to be located
elsewhere—not in the WideClient folder—or else they will be restarted when FS is connected. The INITIAL.LUA
program is not re-run later and is the only exception.

Note that the library support for Lua on WideClient is a subset of that provided in FSUIPC. The library document
highlights those functions omitted in WideClient.

What about access to FSUIPC offsets, FS facilities, and files?
The main useful standard libraries provided with Lua version 5.1 are present and already loaded when any FSUIPC
Lua plug-in is run. These are:

package Facilities for loading and building Lua modules
table Table manipulation, operating on arrays or lists
io File input and output facilities
os Operating system functions like date, time, plus more ambitious stuff
string String manipulation
math All the maths functions you could possibly desire
debug Functions to help get more complex Lua programs working

Note that, so far at least, I have not specifically removed anything from these libraries. That doesn’t mean that all of
their facilities will work, nor are safe to use without risk of crashing FS or distorting its operations. But that’s one of
the risks of power. Looking at the Package and Operating System functions I can see plenty of scope for getting into
real trouble! (If folks would please notify me when they find something so dangerous it should be removed, I will
gradually make it all “safer”, but hopefully still not restrictive).

Additionally, the third-party file system library, lfs (LuaFileSystem) by the Kepler Project is also built-in. A
separate document is supplied describing this library.

In FSUIPC3, FSUIPC4 and WideFS but not FSUIPC5, in addition to the built-in libraries, full LuaSockets support
has been included, with all the major modules also built in. This is a package by Diego Nehab, and thanks are due to
him. For reference data and the full package, go to

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/

These are the built-in (pre-loaded) modules:

 socket.core the code module DLL, supporting the Sockets facilities
 mime.core the code module DLL, supporting the Mime facilities
 ltn12.lua ancillary routines used especially by Mime
 socket.lua helper routines for Sockets, and the man module called by applications
 mime.lua helper routines for Mime support

Note that these modules, though built-in, are not automatically enabled (loaded) ready for direct use in your Lua
plug-ins. You still need to do

 require("socket") for Sockets support, and/or
 require("mime") for Mime support.

but you do not have to have any of the modules listed above present in the FSUIPC folders. They are all pre-loaded.
If you download the full LuaSockets package you will find all sorts of other little Lua examples. You can install all
the parts not listed above in a 'Lua' folder, within the FS modules folder, if you don't want to run them directly from
FS. Among the goodies you'll find there are these Lua modules ("modules" are loaded by Require), which you
should place in a subfolder, modules\Lua\socket:
 socket\ftp.lua For FTP file transfers: use require("socket.ftp")
 socket\http.lua For HTTP web access: use require("socket.http")
 socket\smtp.lua For SMTP emails: use require("socket.smtp")
 socket\tp.lua For basic TP: use require("socket.tp")
 socket\url.lua For basic URL access: use require("socket.url")

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/

In FSUIPC5, the 64-bit version, unfortunately (at present) these LuaSockets facilities are missing -- because a
compatible 64-bit version was not found. However, another user, one Luis Damas, has suggested the following
solution:

You can use lua sockets under FSUIPC5 by loading the 32 bit luasocket library from
 http://files.luaforge.net/releases/luasocket/luasocket/luasocket-2.0.2/luasocket-2.0.2-lua-5.1.2-Win32-vc8.zip
unpacking it into modules/Lua and then replacing "socket/core.dll" with the one
from https://download.zerobrane.com/luasocket-win64.zip.

The only changes to the standard libraries so far are as follows:

(a) Made the os.exit function merely exit and terminate the Lua thread it is executed in. (It is the same as the
added IPC library ipc.exit function).

(b) Made the print function act identically to the added IPC library ipc.log function.

(c) Made the io library function send the data to the log when the stdout or stderr devices are specified.

(d) Changed the searching for modules, carried out by require, to look in the FS Modules folder for Lua
modules, and a Lua subfolder (modules\lua) for Lua modules and code DLLs. I recommend that all Lua
add-ons which are not run directly by FSUIPC, be placed in the Lua subfolder, or subfolders off that. This
applies whether they are Lua modules or DLLs. DLLs should not be placed in the Modules folder directly,
especially in FS2004 or before, as this would likely crash FS on loading.

In addition to the standard libraries, FSUIPC adds eight more:

 ipc Facilities for interfacing to FS and FSUIPC.
 logic Bit-manipulating logic facilities, otherwise missing in Lua.
 event Facilities for taking action on events in FS – arising from buttons, keypresses, mouse

events, FS controls, FS events, FSUIPC offset changes, flag and parameter changes, and
on a timer.

 gfd Go-Flight Device facilities: for reading GF switches, dials, levers, and setting GF
displays and indicators, using the GoFlight module "GFDev.dll".

 sound Facilities for playing and looping on sound files on any available sound devices.
 com Facilities for handling serial port (COM) and USB HID devices, with special facilities

for extracting axis and button data from joystick types.
 mouse Facilities for moving the mouse pointer and manipulating mouse buttons and wheels.
 ext Facilities for running, stopping, and manipulating external programs and their windows.

Ths can also do some manipulation (sizing and positioning) of FS's own windows, when
undocked.

and two extras in WideClient only:

 display Facilities for creating a simple dialogue window with up to 16 read-only edit fields
which can easily be populated by FS or other data.

 wnd Facilities for creating text display windows.

These are documented in a separate document which you should find with this package. There's a specific example
Lua plug-in for the WideClient display library, too, called just "mydisplay.lua".

On top of these facilities, when a Lua plug-in is run because of an FS control (Lua <name> or Lua Debug <name>),
any parameter passed with that control is available to the Lua program as a variable called ipcPARAM. This might
be particularly useful if the control is assigned to an Axis or POV, where the axis or POV value is thereby passed to
the program. The added FSUIPC control "LuaValue ..." also passes values via ipcPARAM, and changes to it can
trigger Lua plug-in code via a special event.

Note that the ipcPARAM value is set enternally to the Lua plug-in before each function entry from an event, and
also after every use of the ipc.sleep function. It is not a variable which can be used internally to the plug-in to retain
its own value unless both events and sleeps are completely avoided.

The facilities provided by Lua and these libraries are certainly quite sufficient to actually program working
subsystems for your aircraft cockpit. Currently there are no specific hardware interfaces – you’d talk to most current
hardware via FSUIPC offsets, or by using USB-type filenames and the “io” file functions. If folks would like direct
interfaces to popular hardware interface cards, those used for display driving, and button/switch/dial inputs, I’m sure
these can be built in, or added on, perhaps partially as Lua programs themselves, or with some extra libraries
specifically oriented. Mostly I cannot do these directly myself, or at least not without the hardware in question, but
I’d be glad to discuss ways and means with those who could either do it, or assist appropriately.

http://files.luaforge.net/releases/luasocket/luasocket/luasocket-2.0.2/luasocket-2.0.2-lua-5.1.2-Win32-vc8.zip
https://download.zerobrane.com/luasocket-win64.zip

What about some examples, please?

Included in the package you have downloaded are many LUA files, ready to be used. Here are details of some.
Please also visit the User Contributions sub-forum on my Support Forum for lots more and additional help.

AIfreezer.lua Only useful with FSUIPC5 (P3D4), this freezes AI traffic in Taxi-Out mode
when your approaching aircraft lowers its gear (or sets full flaps for fixed gear
aircraft), and frees them again on touchdown..

HidDemo.lua This shows what can be done with the com library facilities to read and process
HID (Human Interface Devices) with particular attention to joystick or analogue
axis values and buttons. If you have a device which exceeds FSUIPC's capacities
for axis types and numbers or buttons, this is the way to solve that problem. You
can handle up to 16 each of 12 difference named axes, and up to 256 buttons, on
each connected device of a joystick type. And because WideClient also supports
the com library, you can do this across a Network too.

rotaries.lua This uses the HID features of the com library to implement fast and slow turning
button results for rotary encoders which otherwise only indicate one button
press/release for each direction.

TripleUse.lua This is an example of using the event.button() function for getting three separate
uses from a single button, by single click, double click and longer press methods.
It could be extended to cover many buttons. It would need running initially by an
ipc.macro() call in ipcReady.lua.

TileSix.lua This is a very simple example of the use of the ext.position function (in the ext
library) to tile six undocked FS windows on a second screen.

log lvars.lua A useful little routine which logs all of the currently available local panel variables
(LVARS) which can be read and written using the Lua ipc library, or written using
FSUIPC Macros via the “L:<name>,action” facilities. The values are listed in the
Log initially and when any change, and also displayed as they change on the
screen, in the Lua display window.

 Use this to work out how to define your macros in order to operate many switches
and facilities otherwise inaccessible without using a mouse.

Init pos.lua A small program which simply places the user’s aircraft at a fixed place with a
given airspeed. (The airspeed setting only works correctly with FSX or ESP).

Display vals.lua Continuous on-screen displays of some aircraft variables. Undock the window for
greater clarity.

Record to csv.lua A data recorder, writing lines of important data about the aircraft at up to 20 times
a second, The file is in CSV format, displayed nicely in Excel and similar
programs. [Note that the original version included a syntax error in line 49].

Fuel737.lua
Payload737.lua These two examples demonstrate the ipc.keypressplus function, which can send

keypresses to FS which even work in Menus, and when FS doesn't have the
focus—the function provides options for changing focus there and back. The
examples are merely editing fixed values into the default 737 fuel and payload
menus, respectively, but could be generalised with more sophisticated Lua
programming.

Testsrvr.lua
Testclnt.lua A pair of programs, Server and Client, which can be run together (start the server

first) to test / demonstrate the LuaSockets facilities built into FSUIPC. As defined
they run in the same FS session (host is defined as "localhost"), but you can
change this to run between two PCs running FS if you like, or simply run one of
them directly under the Lua stand-alone interpreter—but in the last case you'd
need to take care of the correct LuaSockets installation.

SlaveServer.lua
MasterClient.lua Another pair of LuaSockets demos. These are more eye-catching when used, but

you do need two PCs running FS. You'll need to edit the Host name in both to be
the name of the Server PC, which will have its user aircraft slaved to the Client,
which acts as Master. It works quite well for a rather crude un-optimised
implementation—not smooth, but not as jerky as I thought it would be. If one PC

is more powerful than the other it works best with the more powerful acting as the
Master Client. The Salve is best put into Slew mode, though it will work in normal
flight mode (jerkier) and may well work okay in Paused mode.

gfdDisplay.lua Test program for all known and connected GoFlight devices, using the gfd library.

VRI_SetMach.lua An example plugin for the VRInsight MCP Combi to allow it to be used with
Mach mode speed control as well as IAS. This is loaded and run automatically via
the FSUIPC VRInsight facilities, set up as explained in another document
included with this package entitled "Lua plugins for VRInsight devices"

VRI_SetBaro.lua An example plugin for the VRInsight M-Panel to allow it to show the altimeter
BARO setting in millibars (hectoPascals) as a switchable alternative to inches.
This is loaded and run automatically via the FSUIPC VRInsight facilities, set up
as explained in another document included with this package entitled "Lua
plugins for VRInsight devices"

F1MustangSwCtl.zip Contains a Lua plugin for FSX to emulate certain mouse click controls for the
Flight1 Cessna Mustang subpanel and console switches, along with an
"ipcReady.lua" to show one way to get it loaded ready for use. Contributed by G
C McMillen, with thanks.

ThrustSym.lua, ThrustSym4.lua, SyncAxis.lua
 Lua plug-ins which actively synchronise thrust settings (and other levers in the

case of "SyncAxis") by setting the best intermediate value when the levers are
close enough (within a specified distance). These have been kindly donated by
support forum user "Muas", with thanks.

WP6.lua A demonstration of the indicator brightness and colour setting facilities for the
GoFlight GF-WP-6 module.

MyDisplay.lua For WideClient only (6.895 or later). This is an example for the display library
functions, displaying and updating an assortment of FS values, including, if Radar
Contact 4 is running, a decode of the waypoint and runway lines from RC's menu.
Just place the file into the same folder as your WideClient. It will start when FS is
ready to fly and WideClient is fully connected.

Frictions.lua, DynamicFriction.lua

 For FSUIPC4 only, these set the frictional coefficients in FSX's SIM1.DLL to
those originally recommended in the AVSIM FSX forum discussing these. The
ones set are those originally determined by Johan Dees. These plug-ins are here as
examples -- there will likely be improved sets of values available by now.

TextMenu.lua A plug-in for WideClient (6.997 or later) demonstrating the event.textmenu
function. It handles client displays of FSUIPC texts (like Radar Contact menus)
and SimConnect texts and menus arriving from SimConnect applications. These
facilities need FSUIPC 4.905 or later, a parameter adding to the FSUIPC4.INI file
("InterceptTextMenu=Yes"), and FSX SP2 or Acceleration (not currently either
SP1 or Prepar3D).

mrudder Rudder control by mouse: An example of the use of the mouse library in
conjunction with the extensive mouse events in the event library (FSUIPC4 only).

 The rudder control action can be enabled and disabled via a button or key
assignment, and operates when the right mouse button is held down. The mouse
position is returned after action, and whilst the rudder control is operating the
horizontal position of the pointer in the FS screen shows the rudder position.

VAS Monitor.lua This plug-in provides a Lua display window on the FS screen (but undockable)
which shows the frame rate, the free memory, the maximum free memory block,
and the number of AI Traffic.

VAS monitor WideFS.lua is a version of the previous one but usable under WideClient to provide a
display on the Networked PC rather than the FS PC.

Additional sources of useful Lua plug-ins

One place where many users have posted useful working plug-ins, plus assistance for others, is the User
Contributions sub-forum in my Support Forum on SimFlight. Here's a direct link:

http://forum.simflight.com/forum/143-user-contributions/

Perhaps, when you produce something useful, you too could add it to this Forum so that others can also enjoy your
work?

Other Lua libraries which may be useful with FSUIPC and Flight Simulator
Often Lua libraries are provided as Lua files or DLLs, and have to be brought into your project using "require". When using these you should
create a sub-folder in the FS Modules folder called "Lua" or "DLL" (either will work). Place the additional libraries into one of those -- ideally
Lua libraries into the Lua subfolder, and DLL libraries into the DLL sub-folder (though DLLs can also go into the Lua subfolder if you wish).
Libraries written in Lua should not normally be placed into the Modules folder tself because then they would be assignable in FSUIPC
assignments drop-downs, and running them directly in FSUIPC just won't work.

Here are links to some libraries which folks have told me about:

http://www.super-hornet.com/download/ saitek.dll, a library for Saitek display units, by Chris Apers.

http://ittner.github.com/lua-gd/ gd.dll, a library for graphics, by Thomas Boutell and Alexandre Ittner.

https://github.com/davidm/luacom/ luacom.dll, allows Lua programs to use and implement objects that follow Microsoft's COM (Component
Object Model) specification and ActiveX technology. For a good example refer to my Support forum's User
Contributions subforum, the item on Pokeys Device interfacing by "tlhflfsx".

Note that these are highly technical and aimed at reasonably experienced programmers.

http://forum.simflight.com/forum/143-user-contributions/
http://www.super-hornet.com/download/
http://ittner.github.com/lua-gd/
https://github.com/davidm/luacom/

